AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    ai模型训练 cpu 更多内容
  • 模型训练服务首页简介

    模型训练服务首页简介 模型训练服务首页展示了用户自己创建的项目和用户所属租户下面其他用户创建的公开项目,提供如下功能: 创建项目 使用模板快速创建项目,模板中已经预制数据集、特征处理算法、模型训练算法和模型验证算法。 查看和编辑项目信息 模型训练服务首页界面如下图所示。 图1 模型训练服务首页

    来自:帮助中心

    查看更多 →

  • 如何提升模型训练效果?

    在模型构建过程中,您可能需要根据训练结果,不停的调整数据、训练参数或模型,以获得一个满意的模型。更新模型时,可以通过如下几方面提升模型训练效果:检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类

    来自:帮助中心

    查看更多 →

  • 训练科学计算大模型

    训练科学计算大模型 科学计算大模型训练流程与选择建议 创建科学计算大模型训练任务 查看科学计算大模型训练状态与指标 发布训练后的科学计算大模型 管理科学计算大模型训练任务 科学计算大模型训练常见报错与解决方案 父主题: 开发盘古科学计算大模型

    来自:帮助中心

    查看更多 →

  • 分布式模型训练

    分布式模型训练 分布式训练功能介绍 创建单机多卡的分布式训练(DataParallel) 创建多机多卡的分布式训练(DistributedDataParallel) 示例:创建DDP分布式训练(PyTorch+GPU) 示例:创建DDP分布式训练(PyTorch+NPU) 父主题:

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard训练模型

    使用ModelArts Standard训练模型 模型训练使用流程 准备模型训练代码 准备模型训练镜像 创建调试训练作业 创建算法 创建生产训练作业 分布式模型训练 模型训练存储加速 增量模型训练 自动模型优化(AutoSearch) 模型训练高可靠性 管理模型训练作业

    来自:帮助中心

    查看更多 →

  • eagle投机小模型训练

    eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据进行训练eagle小模型,并使用自行训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • eagle 投机小模型训练

    eagle 投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据进行训练eagle小模型,并使用自行训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • 创建模型不同方式的场景介绍

    创建模型的几种场景 从训练作业中导入模型文件创建模型:在ModelArts中创建训练作业,并完成模型训练,在得到满意的模型后,可以将训练后得到的模型创建为模型,用于部署服务。 从OBS中导入模型文件创建模型:如果您使用常用框架在本地完成模型开发和训练,可以将本地的模型按照模型包规范上传至O

    来自:帮助中心

    查看更多 →

  • 训练作业的自定义镜像制作流程

    训练作业 自定义镜像 制作流程 如果您已经在本地完成模型开发或训练脚本的开发,且您使用的AI引擎是ModelArts不支持的框架。您可以制作自定义镜像,并上传至SWR服务。您可以在ModelArts使用此自定义镜像创建训练作业,使用ModelArts提供的资源训练模型。 制作流程 图1

    来自:帮助中心

    查看更多 →

  • 查询训练作业版本详情

    JSON 训练作业模型单个分类,包含类ID和类名。 表8 metric_values属性列表 参数 参数类型 说明 recall Float 训练作业模型单个分类召回率。 precision Float 训练作业模型单个分类精确率。 accuracy Float 训练作业模型单个分类准确率。

    来自:帮助中心

    查看更多 →

  • 训练模型时引用依赖包,如何创建训练作业?

    训练模型时引用依赖包,如何创建训练作业? ModelArts支持训练模型过程中安装第三方依赖包。在训练代码目录下放置“pip-requirements.txt”文件后,在训练启动文件被执行前系统会执行如下命令,以安装用户指定的Python Packages。 pip install

    来自:帮助中心

    查看更多 →

  • 使用AI Gallery的订阅算法实现花卉识别

    在训练作业详情页的右上角单击“创建AI应用”,进入创建AI应用页面。 也可以在ModelArts管理控制台,选择“资产管理 > AI应用”,在“自定义AI应用”页面,单击“创建”,进入创建AI应用页面。 在创建AI应用页面,系统会自动根据上一步训练作业填写参数,参考如下说明确认关键参数。 “元模型来源”:系统自动选择“从训练中选择”。

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练模型达到目标后,再执行模型部署的操作。

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    后等待工作流按顺序进入训练节点。 模型将会自动进入训练,无需人工介入,训练时间相对较长,建议您耐心等待。如果关闭或退出此页面,系统仍然在执行训练操作。 在“文本分类”节点中,待训练状态由“运行中”变为“运行成功”,即完成模型的自动训练。 图2 运行成功 训练完成后,您可以单击文本

    来自:帮助中心

    查看更多 →

  • 管理AI Gallery模型

    管理AI Gallery模型 编辑模型介绍 资产发布上架后,准确、完整的资产介绍有助于提升资产的排序位置和访问量,能更好的支撑用户使用该资产。 在模型详情页,选择“模型介绍”页签,单击右侧“编辑介绍”。 编辑模型基础设置和模型描述。 表1 模型介绍的参数说明 参数名称 说明 基础设置

    来自:帮助中心

    查看更多 →

  • ModelArts入门实践

    Standard的自动学习功能完成“图像分类”AI模型训练和部署。 面向AI开发零基础的用户 使用Standard自动学习实现口罩检测 本案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者使用ModelArts Standard的自动学习功能完成“物体检测”AI模型训练和部署。依

    来自:帮助中心

    查看更多 →

  • 查询训练作业版本列表

    JSON 训练作业模型单个分类,包含类ID和类名。 表10 metric_values属性列表 参数 参数类型 说明 recall Float 训练作业模型单个分类召回率。 precision Float 训练作业模型单个分类精确率。 accuracy Float 训练作业模型单个分类准确率。

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    PyTorch NPU训练指导 预训练、SFT全参微调训练、LoRA微调训练 介绍主流的开源大模型Llama系列、Qwen系列、Yi系列、Baichuan系列、ChatGLM系列等基于ModelArts DevServer的训练过程,训练使用PyTorch框架和昇腾NPU计算资源。训练后的模型可用于推理部署,搭建大模型问答助手。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了