AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    因果推断机器学习 更多内容
  • AI开发基本流程介绍

    AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    适用于人工智能与机器学习场景的合规实践 该示例模板中对应的合规规则的说明如下表所示: 表1 合规包示例模板说明 合规规则 规则中文名称 涉及云服务 规则描述 cce-cluster-end-of-maintenance-version CCE集群版本为处于维护的版本 cce CC

    来自:帮助中心

    查看更多 →

  • 准备SDC算法

    OS采用轻量级微服务架构,以服务的形式提供基础硬件和公共软件能力。您可以基于开放的SDC OS进行算法的代码开发。 接口参考 模型训练 俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,发现因果关系、内部联系和业务规律,从而得到一个或多个机器学习模型。 一站式开发平台使用指南

    来自:帮助中心

    查看更多 →

  • AI特性函数

    l (text, VARIADIC "any") 描述:获取返回值为布尔型的模型进行模型推断任务。此函数为内部调用函数,建议直接使用语法PREDICT BY进行推断任务。 参数:模型名称和推断任务的输入列。 返回值类型:bool db4ai_predict_by_float4(text

    来自:帮助中心

    查看更多 →

  • AI特性函数

    l (text, VARIADIC "any") 描述:获取返回值为布尔型的模型进行模型推断任务。此函数为内部调用函数,建议直接使用语法PREDICT BY进行推断任务。 参数:模型名称和推断任务的输入列。 返回值类型:bool 此函数为内部调用函数,不建议用户直接使用。 db4

    来自:帮助中心

    查看更多 →

  • AI特性函数

    l (text, VARIADIC "any") 描述:获取返回值为布尔型的模型进行模型推断任务。此函数为内部调用函数,建议直接使用语法PREDICT BY进行推断任务。 参数:模型名称和推断任务的输入列。 返回值类型:bool db4ai_predict_by_float4(text

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情

    来自:帮助中心

    查看更多 →

  • 什么是Ray

    还引入了动态任务图的概念,这使得它可以处理需要灵活调度的工作负载,例如强化学习、超参数调整和其他迭代式算法。 通过提供对分布式计算的支持,Ray促进了更快的模型训练和更有效的资源使用,对于那些希望在多台机器上扩展其应用的研究人员和工程师来说,是一个强有力的工具。同时,Ray生态系统还包括一些高级库,例如Ray

    来自:帮助中心

    查看更多 →

  • 概述

    文件管理 文件管理是可信智能计算服务提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。

    来自:帮助中心

    查看更多 →

  • AI特性函数

    l (text, VARIADIC "any") 描述:获取返回值为布尔型的模型进行模型推断任务。此函数为内部调用函数,建议直接使用语法PREDICT BY进行推断任务。 参数:模型名称和推断任务的输入列。 返回值类型:bool 不建议用户直接使用。 db4ai_predict_by_float4(text

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的服务器后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • AI原生应用引擎基本概念

    处理、机器翻译、 语音识别 、智能问答等领域。 向量化模型 向量化模型是将文本数据转换为数值向量的过程。常用于将文本转换为机器可以处理的形式,以便进行各种任务,如文本分类、情感分析、机器翻译等。 多模态模型 多模态模型是指能够处理多种类型数据(如文本、图像、音频等)的机器学习模型。这

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    low2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、语音识别、机器翻译编程实验 与图像识别、语言识别、机器翻译编程相关的实验操作

    来自:帮助中心

    查看更多 →

  • HCIA-AI

    200USD 考试内容 HCIA-AI V3.0考试包含人工智能基础知识、机器学习、深度学习、昇腾AI体系、华为AI全栈全场景战略知识等内容。 知识点 人工智能概览 10% 机器学习概览 20% 深度学习概览 20% 业界主流开发框架 12% 华为AI开发框架MindSpore 8%

    来自:帮助中心

    查看更多 →

  • 华为机器翻译(体验)

    华为机器翻译(体验) 华为云自言语言处理服务机器翻译功能。机器翻译(Machine Translation,简称MT),为用户提供快速准确的翻译服务,帮助用户跨语言沟通,可用于文档翻译等场景中,包含“文本翻译”和“语种识别”执行动作。 连接参数 华为机器翻译(体验)连接器无需认证,无连接参数。

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • AI防护者初始化

    AI防护者初始化 登录AI防护者管理页面,URL地址为“https://<管理节点IP>:8000” 启用主动学习机器学习设置>主动学习>选择网站>应用 图1 AI防护者初始化1 查看学习内容 图2 AI防护者初始化2 父主题: AI防护者初始化

    来自:帮助中心

    查看更多 →

  • 问答机器人API

    项目ID,用于资源隔离。请参见获取项目ID。 qabot_id 是 String 机器人标识符,qabot编号,UUID格式。如:303a0a00-c88a-43e3-aa2f-d5b8b9832b02。 获取方法: 登录对话机器服务控制台,在智能问答机器人列表中查看qabot_id。 请求参数 表2 请求Header参数

    来自:帮助中心

    查看更多 →

  • 如何删除机器人

    如何删除机器人 包周期版本机器人 对于包周期计费的智能问答机器人,可执行“退订”操作。 登录对话机器服务管理控制台。 在控制台中选择“费用与成本”。 进入费用中心页面,在左侧导航栏中选择“订单管理 > 退订与退换货”。 图1 退订与退换货 在“退订使用中的资源”列表中,选择需要退订的机器人,执行退订操作。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了