AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    双塔模型机器学习 更多内容
  • 排序策略

    单击选择训练结果在OBS中的保存根路径,训练完成后,会将模型和日志文件保存在该路径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    learning_rate 学习学习率是每一次迭代中梯度向损失函数最优解移动的步长。 weight_decay 权重衰减因子 对模型参数进行正则化的一种因子,可以缓解模型过拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数,一开始以较小的学习率去更新参数,然后再使用预设学习率,有效避免模型震荡。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • COST02-01 建立云预算与预测流程

    张)的预测,可以有效改进并提升企业的财务预测准确率。 相关服务和工具 使用成本中心的成本分析,可以根据客户的历史支出预测未来时间范围的成本。成本分析的成本和使用量预测,会参考不同的计费模式特征,结合机器学习和基于规则的模型来分别预测所有消费模式的成本和使用量。 使用成本分析确定基

    来自:帮助中心

    查看更多 →

  • HCIA-AI

    200USD 考试内容 HCIA-AI V3.0考试包含人工智能基础知识、机器学习、深度学习、昇腾AI体系、华为AI全栈全场景战略知识等内容。 知识点 人工智能概览 10% 机器学习概览 20% 深度学习概览 20% 业界主流开发框架 12% 华为AI开发框架MindSpore 8%

    来自:帮助中心

    查看更多 →

  • 转换逻辑模型为物理模型

    转换逻辑模型为物理模型 功能介绍 转换逻辑模型为物理模型,转换成功则显示转换后的目标模型信息。 异常:目标模型信息的“id”等属性为null时,则需要调用《获取操作结果》接口查看具体报错信息:GET https://{endpoint}/v1/{project_id}/design/operation-results

    来自:帮助中心

    查看更多 →

  • 模型测试

    单击界面左下角的“异常检测模型测试”,弹出“异常检测模型测试”代码框,如图3所示。 “是否绘图”请选择“是”,可以通过绘图查看模型的测试验证效果。 图3 异常检测模型测试 单击“异常检测模型测试”代码框左侧的图标。等待模型测试完成。 模型测试打印结果示例,如图4所示。截图仅为模型测试打印结果的一部分,具体以实际打印结果为准。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 硬盘故障检测模板会预置模型训练工程,无需关注,下面会提供端到端的操作流程,帮助用户快速熟悉模型训练界面操作。 单击菜单栏中的“模型训练”,进入模型训练首页。 可以看到预置的“hardisk_detect”模型训练工程,这是硬盘故障检测模板预置的模型训练工程,本次不使用。

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 模型管理简介 创建模型 模型推理

    来自:帮助中心

    查看更多 →

  • 测试模型

    测试模型 用测试数据测试模型的泛化能力。训练数据可以是带标签或者不带标签的数据,测试数据一定是带标签的数据,方便评估模型执行效果。 单击“训练模型”左下方的“测试模型”,新增“测试模型”内容。 参数配置均保持默认值。 单击“测试模型”代码框左侧的图标,进行模型评估。 模型测试效果会通过表格的形式在下方展示。

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 特征和算法确定后,可以开始训练模型。 训练模型 单击“模型选择”左下方的“训练模型”。 新增“训练模型”内容,如图1所示。 图1 训练模型 单击“训练模型”代码框左侧的图标,进行模型训练。 模型训练完成后,界面下方展示模型的评估效果。 第一列内容的含义如下所示: 0:标注为0的所有样本。可以理解为标签。

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 单击菜单栏中的“模型管理”,可在“模型管理”界面查看打包好的模型,如图1所示。 图1 模型管理 父主题: 使用模型训练服务快速训练算法模型

    来自:帮助中心

    查看更多 →

  • 发布模型

    发布模型 逻辑实体创建完成后,必须创建对应的物理实体,才可以发布逻辑模型。 操作步骤 在数据服务左侧导航,选择“工具箱>数据开发>数据建模”。 在左侧导航中,单击展开分层,选择一个分层。 在需要发布的逻辑实体对应的“操作”列下,单击>。 在“提示”对话框中单击“确认”。 在“确认”对话框中单击“确定”。

    来自:帮助中心

    查看更多 →

  • 模型训练

    信息。 单击图标,查看模型评估报告。 评估指标:可以通过数值和图表方式展示各项指标的数据信息。 超参:展示训练集、测试集和标签列的信息。 任务系统参数:展示训练任务的配置参数信息。 创建联邦学习训练任务(WebIDE) 返回“模型训练”菜单界面,单击联邦学习工程所在行,进入工程详情界面。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 导入SDK 选择数据 特征画像 模型选择 训练模型 测试模型 开发推理 归档模型 父主题: KPI异常检测学件服务

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 模型管理简介 创建模型包 编辑模型包 上架模型包至AI市场 发布推理服务 模型包完整性校验 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 归档模型

    是否生成本地模型包:请保持默认值关闭。即默认不在当前JupyterLab特征工程项目中生成本地模型包。仅归档模型包,供模型管理页面新建模型包使用。 是否生成本地metadata.json:请保持默认值关闭。 单击归档cell代码框左侧的图标,完成模型归档。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 训练模型

    模型”,并配置训练参数,开始训练模型。 预训练模型 当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”和“训练轮次”。 “学习率”用来控制模型的学习速度,范围为(0

    来自:帮助中心

    查看更多 →

  • 评估模型

    详细评估 后续操作 针对当前版本的模型,经过“整体评估”和“详细评估”后,如果根据业务需求,模型还需继续优化,请单击“上一步”,回到“模型训练”步骤,详细操作指导请见训练模型。 如果模型已达到业务需求,请单击“发布部署”,进入“服务部署”步骤,详情请见部署服务。 父主题: 通用文本分类工作流

    来自:帮助中心

    查看更多 →

  • 评估模型

    并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。 图1 评估模型 模型评估 “模型评估”下侧显示当前模型的版本、验证集数量。 评估参数对比 “评估参数对比”下方显示当前模型的评估参

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了