树梅派 tensorflow 更多内容
  • 如何在CodeLab上安装依赖?

    source /home/ma-user/anaconda3/bin/activate TensorFlow-1.8 如果需要在其他python环境里安装,请将命令中“TensorFlow-1.8”替换为其他引擎。 在代码输入栏输入以下命令安装Shapely。 pip install

    来自:帮助中心

    查看更多 →

  • OBS操作相关故障

    OBS操作相关故障 读取文件报错,如何正确读取文件 TensorFlow-1.8作业连接OBS时反复出现提示错误 TensorFlow在OBS写入TensorBoard到达5GB时停止 保存模型时出现Unable to connect to endpoint错误 OBS复制过程中提示“BrokenPipeError:

    来自:帮助中心

    查看更多 →

  • 旧版训练迁移至新版训练需要注意哪些问题?

    分别支持的AI引擎。 表1 新旧版预置引擎差异 工作环境 预置训练I引擎与版本 旧版训练 新版训练 TensorFlow Tensorflow-1.8.0 √ x Tensorflow-1.13.1 √ 后续版本支持 Tensorflow-2.1.0 √ √ MXNet MXNet-1

    来自:帮助中心

    查看更多 →

  • 使用自定义镜像增强作业运行环境

    1720240419835647952528832.202404250955 创建 自定义镜像 tensorflow为例,说明如何将tensorflow打包进镜像,生成安装了tensorflow的自定义镜像,在 DLI 作业中使用该镜像运行作业。 准备容器环境。 请参考安装容器引擎文档中的“安装容器引擎”章节。

    来自:帮助中心

    查看更多 →

  • 模型调试

    为空。 model_type 是 String 模型类型,取值为:TensorFlow/MXNet/Spark_MLlib/Scikit_Learn/XGBoost/MindSpore/Image/PyTorch。 model_algorithm 否 String 模型算法,表示

    来自:帮助中心

    查看更多 →

  • 概要

    本章节主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 模板管理

    。如果推理服务不使用Tensorflow引擎,实现起来效果不理想。 仅支持提供一个推理服务调用接口,无法满足某些Case的需求,比如:KPI异常检测。 模板优势 使用云端推理框架的“模板管理”具备如下优势: 相对于仅能使用固定类型的模型类型TensorFlow,模板部署模型包的方

    来自:帮助中心

    查看更多 →

  • 使用模型

    IDE Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 如何将Keras的.h5格式模型导入到ModelArts中

    ModelArts不支持直接导入“.h5”格式的模型。您可以先将Keras的“.h5”格式转换为TensorFlow的格式,然后再导入ModelArts中。 从Keras转TensorFlow操作指导请参见其官网指导。 父主题: 导入模型

    来自:帮助中心

    查看更多 →

  • ModelArts SDK、OBS SDK和MoXing的区别?

    架,构建于TensorFlowPyTorchMXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Framework模块是一个基础公共组件,可用于访问OBS服务,和具体的AI引擎解耦,在M

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    松的完成数字图像分类模型的分布式训练。 登录CCE控制台,单击集群名称进入一个集群。 在CCE集群上部署Volcano环境。 单击左侧栏目中的“插件管理”,单击Volcano插件下方的“安装”,在安装插件页面中选择插件的规格配置,并单击“安装”。 部署Mnist示例。 下载ku

    来自:帮助中心

    查看更多 →

  • 查询作业引擎规格

    engines结构数组 引擎规格参数列表,如表4所示。 表4 engines属性列表说明 参数 参数类型 说明 engine_type integer 训练作业的引擎类型。 1:TensorFlow。 2:MXNet。 4:Caffe。 5:Spark_MLlib 6: Scikit Learn

    来自:帮助中心

    查看更多 →

  • 保存模型时出现Unable to connect to endpoint错误

    对于OBS连接不稳定的现象,通过增加代码来解决。您可以在代码最前面增加如下代码,让TensorFlow对ckpt和summary的读取和写入可以通过本地缓存的方式中转解决: import moxing.tensorflow as mox mox.cache() 父主题: OBS操作相关故障

    来自:帮助中心

    查看更多 →

  • 华为HiLens支持的模型必须是ModelArts训练出的模型吗?

    om”格式。 并非所有模型都能转换成功,进行导入(转换)模型操作前,请确认是否为“.om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界和Tensorflow算子边界。 ModelArts训练模型 华为HiLens支持在ModelArts训练自己的算法

    来自:帮助中心

    查看更多 →

  • 导入/转换本地开发模型

    操作前,请确认是否为“.om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界和Tensorflow算子边界。 前提条件 已在本地开发模型。本地自定义的训练模型,非“.om”格式的模型上传文件包含caffe模型文件“.caffemodel”和“.prototxt”和配置文件“

    来自:帮助中心

    查看更多 →

  • 日志提示“AttributeError: 'NoneType' object has no attribute 'dtype'”

    has no attribute 'dtype'” 问题现象 代码在Notebook的keras镜像中可以正常运行,在训练模块使用tensorflow.keras训练报错时,出现如下报错:AttributeError: 'NoneType' object has no attribute

    来自:帮助中心

    查看更多 →

  • mox.file与本地接口的对应关系和切换

    python接口一一对应关系。 tf.gfile:指MoXing文件操作接口一一对应的TensorFlow相同功能的接口,在MoXing中,无法自动将文件操作接口自动切换为TensorFlow的接口,下表呈现内容仅表示功能类似,帮助您更快速地了解MoXing文件操作接口的功能。 表1

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    架,构建于TensorFlowPyTorchMXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Framework模块是一个基础公共组件,可用于访问OBS服务,和具体的AI引擎解耦,在M

    来自:帮助中心

    查看更多 →

  • 多节点训练TensorFlow框架ps节点作为server会一直挂着,ModelArts是怎么判定训练任务结束?如何知道是哪个节点是worker呢?

    多节点训练TensorFlow框架ps节点作为server会一直挂着,ModelArts是怎么判定训练任务结束?如何知道是哪个节点是worker呢? TensorFlow框架分布式训练的情况下,会启动ps与worker任务组,worker任务组为关键任务组,会以worker任务组的进程退出码,判断训练作业是否结束。

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online快速开发、发布 WeLink 应用。 4-基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。

    来自:帮助中心

    查看更多 →

  • Notebook中快速使用MoXing

    Notebook”开发页面。 在JupyterLab的“Launcher”页签下,以TensorFlow为例,您可以单击TensorFlow,创建一个用于编码的文件。 图1 选择不同的AI引擎 文件创建完成后,系统默认进入“JupyterLab”编码页面。 图2 进入编码页面 调用mox

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了