AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习图 更多内容
  • 可信联邦学习作业

    可信联邦学习作业 概述 创建横向训练型作业 横向联邦训练作业对接MA 创建横向评估型作业 创建纵向联邦学习作业 执行作业 查看作业计算过程和作业报告 删除作业 安全沙箱机制

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    状态码: 200 新建联邦学习作业成功 { "job_id" : "c098faeb38384be8932539bb6fbc28d3" } 状态码 状态码 描述 200 新建联邦学习作业成功 401 操作无权限 500 内部 服务器 错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是

    来自:帮助中心

    查看更多 →

  • 查询并导出课程学习记录

    具体的课程编号,支持模糊搜索 课程类别 已配置好的课程类别 学习状态 已完成 未完成 组织单元 用户的组织单元分类 单选或多选中课程学习记录后点击左上角“导出”按钮,弹出导出提示框(如下),点击蓝色跳转“这里”可查看具体导出内容 2 “课程学习记录”导出提示 父主题: 作业人员

    来自:帮助中心

    查看更多 →

  • 创建可信联邦学习作业

    创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 执行ID选取截断 执行纵向联邦分箱和IV计算作业 执行样本对齐 查询样本对齐结果 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 产品概述

    PC、 区块链 等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 产品架构 产品架构如1所示。 1 产品架构 空间管理 邀请云租户作为数据提供方,动态构建 可信计算 空间,实现空间内严格可控的数据使用和监管。 数据融合分析 支持对接多

    来自:帮助中心

    查看更多 →

  • 产品优势

    ,为TB~EB级数据提供了更实时高效的多样性算力,可支撑更丰富的大数据处理需求。产品内核及架构深度优化,综合性能是传统MapReduce模型的百倍以上,SLA保障99.95%可用性。 1 DLI Serverless架构 与传统自建Hadoop集群相比,Serverless架构的DLI还具有以下优势:

    来自:帮助中心

    查看更多 →

  • 产品优势

    产品优势 检测准确 基于深度学习技术和大量的样本库,帮助客户快速准确进行违规内容检测,维护内容安全。 功能丰富 提供文本、像、音频、视频等内容检测,覆盖涉黄、广告、涉暴等多种违规风险的内容检测。 稳定可靠 内容审核 服务已成功应用于各类场景,基于华为等企业客户的长期实践,经受过复杂场景考验。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 基本概念

    One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角的标中的“数据处理”菜单下面的数据处理算子。 模型包 将模型训练生成的模型进行打包。可以基于模型包生成SHA256校验码、创建模型验证服务、重

    来自:帮助中心

    查看更多 →

  • 概述

    概述 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 父主题: 产品介绍

    来自:帮助中心

    查看更多 →

  • 恢复归档或深度归档存储对象

    恢复归档或深度归档存储对象 功能介绍 如果要获取归档存储或深度归档对象的内容,需要先将对象恢复,然后再执行下载数据的操作。对象恢复后,会产生一个标准存储类型的对象副本,也就是说会同时存在标准存储类型的对象副本和归档或深度归档存储类型的对象,在恢复对象的保存时间到期后标准存储类型的对象副本会自动删除。

    来自:帮助中心

    查看更多 →

  • 恢复归档或深度归档存储对象

    态。 控制台:单击对象,进入对象详情页,如4所示,在基本信息页签即可查看对象恢复状态。 3 使用控制台查看对象恢复状态 OBS Browser+:单击对象右侧的“”标,然后单击“属性”选项,如5所示,在弹窗中查看对象恢复状态。 4 使用Browser+查看对象恢复状态

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    对数据进行分析,一般通过使用适当的统计、机器学习深度学习等方法,对收集的大量数据进行计算、分析、汇总和整理,以求最大化地开发数据价值,发挥数据作用。 AI开发的基本流程 AI开发的基本流程通常可以归纳为几个步骤:确定目的、准备数据、训练模型、评估模型、部署模型。 1 AI开发流程 确定目的

    来自:帮助中心

    查看更多 →

  • 方案概述

    户型建模、识别 户型自动生成:用户CAD(dwg/dxf/JPG格式)导入软件,即可完成快速户型生成 户型部件自动识别:利用深度学习技术,自动识别2D户型的墙体、门窗、比例尺。 户型精校:利用比例尺生成3D真实世界坐标点,呈现精准户型 2 户型 硬装、柜体智能布置

    来自:帮助中心

    查看更多 →

  • 什么是图像识别

    效率。 媒资像标签 基于深度学习技术,准确识别像中的视觉内容,提供多种物体、场景和概念标签,具备目标检测和属性识别等能力帮助客户准确识别和理解像内容。主要面向媒资素材管理、内容推荐、广告营销等领域。 1 媒资像标签示例 名人识别 利用深度神经网络模型对片内容进行检测

    来自:帮助中心

    查看更多 →

  • 产品优势

    实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS 、 DLI、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架(TI CS ,TensorFlow)的联邦计算; 支持控制流和数据流的分离,用户无需关心计算任务拆解和组合过程,采用有向无环DAG实现多个参与方数据流的自动化编排和融合计算。

    来自:帮助中心

    查看更多 →

  • 产品功能

    参与方数据源计算节点云原生容器部署,聚合计算节点动态扩容,支持云、边缘、HCSO多种部署模式。 可视化数据监管 为数据参与方提供可视化的数据使用流,提供插件化的区块链对接存储,实现使用过程的可审计、可追溯。

    来自:帮助中心

    查看更多 →

  • 计费说明

    务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。简单场景工作量预计不超过17人天 300,000.00 每套 AI算法原型开发-标准版 对业务场景为普通场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了