华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习模型量化 更多内容
  • 使用kv-cache-int8量化

    les路径对应的模型文件夹下,例如:llama模型对应量化脚本的路径是examples/llama/convert_checkpoint.py。 执行convert_checkpoint.py脚本进行权重转换生成量化系数。 使用tensorRT量化工具进行模型量化。 在GPU机器上使用tensorRT

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表3。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0

    来自:帮助中心

    查看更多 →

  • 在模型广场查看模型

    对话问答、文本推理 中文、英文 模型分为量化模型和非量化模型,其中,量化模型又包括SmoothQuant-W8A8和AWQ-W4A16两种。 AWQ-W4A16量化模型可以由非量化模型压缩后生成,也可以直接使用开源AWQ权重。 SmoothQuant-W8A8量化模型只能由非量化模型压缩生成。 ModelArts

    来自:帮助中心

    查看更多 →

  • 使用llm-compressor工具量化

    OM; 2、若量化Deepseek-v2-236b模型,大致需要10+小时。 使用量化模型 使用量化模型需要在NPU的机器上运行。 启动vLLM前,请开启图模式(参考步骤六 启动推理服务中的配置环境变量),启动服务的命令和启动非量化模型一致。 父主题: 推理模型量化

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持自动抽取模型元信息,实现结构化管理仿真历史数据;支持低码流程模板编排,积累仿真流水线模板与自动化APP。 支持基于专业、产品管理仿真规范,操作手册,形成仿真知识库。 跨领域仿真协同 统一管理多物理场仿真模型、跨纬度(材料、零部件、子系统、系统、体系等)层级仿真模型、跨学科仿真

    来自:帮助中心

    查看更多 →

  • 向量化执行引擎

    量化执行引擎 GS_232010001 错误码: [SonicHashJoin]: The memory of the current statement is not controlled. 解决方案:请设置hashjoin_spill_strategy为0-2。 level:

    来自:帮助中心

    查看更多 →

  • 查询轻量化任务状态

    查询轻量化任务状态 功能介绍 查询轻量化任务状态 图纸上传完成后,即可调用该接口获取图纸轻量化转换状态,该接口可能需要调用多次,直到返回的数据轻量化状态为SUCCESS或FAILED,即代表轻量化转换结束。 如果轻量化状态为SUCCESS,则代表图纸轻量化转换成功,此时可通过li

    来自:帮助中心

    查看更多 →

  • 附录:指令微调训练常见问题

    将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框架的选择,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspee

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化工具转换权重

    使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化量化方法:W4A16 per-group/per-channel

    来自:帮助中心

    查看更多 →

  • 成长地图

    了解更多常见问题、案例和解决方案 模型设计 如何创建连线关系? 如何快速复制元素? 如何表示元素父子关系? 如何实现图与图之间的关联跳转? 更多 模型管理 如何创建包? 如何创建自定义视图和模型? 如何配置自定义元素构造型? 更多 工程管理 如何查看自己的权限? 如何创建模型工程? 如何删除模型工程? 如何对模型工程进行版本管理?

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 Smoot

    来自:帮助中心

    查看更多 →

  • 模型使用指引

    进预训练模型的性能。 2 生成模型服务 将已有模型部署为模型服务 接入模型服务 模型需要部署成功后才可正式提供模型服务。部署成功后,可以对模型服务进行模型调测,并支持在创建Agent时使用或通过模型调用接口调用。 3 调测模型 通过调测模型,可检验模型的准确性、可靠性及反应效果,

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化工具转换权重

    --model-path:原始模型权重路径。 --quantize-model:体现此参数表示会生成量化模型权重。不需要生成量化模型权重时,不体现此参数 --generate-scale:体现此参数表示会生成量化系数,生成后的系数保存在--scale-output参数指定的路径下。如果有指定的量化系数,

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 Smoot

    来自:帮助中心

    查看更多 →

  • 图像搜索SDK简介

    图像搜索 SDK简介 图像搜索概述 图像搜索( Image Search )基于深度学习与图像识别技术,结合不同应用业务和行业场景,利用特征向量化与搜索能力,帮助您从指定图库中搜索相同或相似的图片。 图像搜索服务以开放API(Application Programming Interf

    来自:帮助中心

    查看更多 →

  • 产品功能

    因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 可信智能计算 节点 数据

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    法。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。默认0。 L2正则项系数:叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了