AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 CPU配置 更多内容
  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • 创建横向评估型作业

    可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中配置作业名称相关参数,完成后单击“确定”。 图2 新建作业 在弹出的界面,继续配置可信联邦学习作业的参数,参数配置参考表1。 图3 配置参数 “数据集配置”的“可选数据列表”:

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • x86 V4实例(CPU采用Intel Broadwell架构)

    提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。特别适合于深度学习、科学计算、CAE、3D动画渲染、CAD等应用。 表5 GPU加速型规格详情 规格名称/ID CPU 内存 本地磁盘 扩展配置 physical.p1.large 2*14 Core Intel Xeon

    来自:帮助中心

    查看更多 →

  • 创建共享资源池

    ”。命名空间类型分为“通用计算型”和“GPU加速型”: 通用计算型:支持创建含CPU资源的容器实例及工作负载,适用于通用计算场景。 GPU加速型:支持创建含GPU资源的容器实例及工作负载,适用于深度学习、科学计算、视频处理等场景。 访问密钥 单击“点击上传”,上传访问密钥,在弹出

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 计费说明

    务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。简单场景工作量预计不超过17人天 300,000.00 每套 AI算法原型开发-标准版 对业务场景为普通场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天

    来自:帮助中心

    查看更多 →

  • 功能介绍

    部分深度学习模型参数 一键式模型部署和API发布,提供深度学习模型的快速部署功能,支持GPU资源分配、弹性扩容、模型迭代发布、应用监控和统计分析,轻松实现AI能力服务化。 图19 模型部署发布平台 平台基于模型训练结果,面向典型业务场景与应用需求,可提供遥感影像在线智能解译能力,包括遥感影像的单

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络,深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用

    来自:帮助中心

    查看更多 →

  • 创建横向训练型作业

    空间成员完成计算节点部署配置参数时选择存储方式和数据目录,参考部署计算节点。 空间成员完成数据集准备工作,参考准备本地横向联邦数据资源。 空间成员在数据目录中完成数据发布,参考发布数据。 参与方的计算节点如果是采用云租户部署,并且使用子账号进行创建的,需要参考配置CCE集群子账号权限。

    来自:帮助中心

    查看更多 →

  • 使用AutoGenome镜像

    基于Res-VAE和表达谱对单细胞数据降维 使用该Notebook时需要运行相应的代码模块,运行步骤如下所示。 环境配置:加载AutoGenome以及辅助绘图的软件包。 读取配置文件:通过json文件配置输入和输出路径。 模型训练:针对提供的数据和模型参数,AutoGenome会搜索得到最优的神经网

    来自:帮助中心

    查看更多 →

  • 可信联邦学习作业

    可信联邦学习作业 概述 创建横向训练型作业 横向联邦训练作业对接MA 创建横向评估型作业 创建纵向联邦学习作业 执行作业 查看作业计算过程和作业报告 删除作业 安全沙箱机制

    来自:帮助中心

    查看更多 →

  • 成长地图

    CCE云容器引擎是否支持负载均衡? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍

    来自:帮助中心

    查看更多 →

  • 增强型CPU管理策略

    0的节点池,单击节点池名称后的“配置管理”。 在侧边栏滑出的“配置管理”窗口中,修改kubelet组件的CPU管理策略配置cpu-manager-policy)参数值,选择enhanced-static。 图1 CPU管理策略配置 单击“确定”,完成配置操作。 验证 以8U32G节点为例,并提前在集群中部署一个CPU

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    状态码: 200 新建联邦学习作业成功 { "job_id" : "c098faeb38384be8932539bb6fbc28d3" } 状态码 状态码 描述 200 新建联邦学习作业成功 401 操作无权限 500 内部 服务器 错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    等技术加速计算过程。 支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、准确、可解释的医疗智能模型,加速医疗大健康行业的研究工作。 成

    来自:帮助中心

    查看更多 →

  • 弹性伸缩概述

    就需要为集群增加节点,从而保证业务能够正常提供服务。 弹性伸缩在CCE上的使用场景非常广泛,典型的场景包含在线业务弹性、大规模计算训练、深度学习GPU或共享GPU的训练与推理、定时周期性负载变化等。 CCE弹性伸缩 CCE的弹性伸缩能力分为如下两个维度: 工作负载弹性伸缩:即调度

    来自:帮助中心

    查看更多 →

  • 是否支持CPU架构的变更?

    是否支持CPU架构的变更? 不支持变更CPU架构。 如需改变CPU架构,可通过“数据迁移+交换IP”方式的方式,创建新的CPU架构的实例,并进行数据迁移,实现CPU架构的变更。具体操作请参考使用迁移任务在线迁移Redis实例。 父主题: Redis使用

    来自:帮助中心

    查看更多 →

  • GS_SESSION_CPU_STATISTICS

    语句执行的开始时间。 min_cpu_time bigint 语句在所有DN上的最小CPU时间,单位为ms。 max_cpu_time bigint 语句在所有DN上的最大CPU时间,单位为ms。 total_cpu_time bigint 语句在所有DN上的CPU总时间,单位为ms。 query

    来自:帮助中心

    查看更多 →

  • CPU积分计算方法

    CPU积分计算方法 什么是CPU积分 CPU积分是一种用来衡量 云服务器 计算、存储以及网络配置利用率的方式。云服务器利用CPU积分机制保证云服务器基准性能,解决超分云服务器长期占用CPU资源的问题。 使用CPU积分机制的 弹性云服务器 适用于平时CPU负载不高、但突发时可接受因积分不足

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了