AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习文本向量化 更多内容
  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:W4A16 per-group/per-channel,W8A16

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    convert_awq_to_npu.py --model /home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。 Step4 启动AWQ量化服务 参考部署推理服务,使用量化后权重部署AWQ量化服务。 注:Step3 创建服务启动脚

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 制作文本

    制作文本 创建文本 标题 文本 词云 时间器 表格轮播 表格 数字翻牌器 阈值翻牌器 跑马灯 轮播列表柱状图 矩形树图 父主题: 大屏组件

    来自:帮助中心

    查看更多 →

  • 文本组合

    文本组合 文本组合是将当前表单中的字段按照一定的格式进行组合。 在表单开发页面,从“数据组件”中,拖拽“文本组合”组件至表单设计区域,如图1。 图1 文本组合 显示名称:该组件在页面呈现给用户的名称,可以设置为中文,也可以设置为英文。 选择字段:选择组合的字段,字段和分隔字符不能超过10个。

    来自:帮助中心

    查看更多 →

  • 文本搜索类型

    文本搜索类型 GaussDB (DWS)提供了tsvector和tsquery两种数据类型用于支持全文检索。tsvector类型表示为文本搜索优化的文件格式,tsquery类型表示文本查询。 tsvector tsvector类型表示一个检索单元,通常是一个数据库表中的一行文本字段或者这些字段的组合。

    来自:帮助中心

    查看更多 →

  • 控制文本搜索

    控制文本搜索 解析文档 解析查询 排序查询结果 高亮搜索结果 父主题: 全文检索

    来自:帮助中心

    查看更多 →

  • 文本审核

    文本审核 文本 内容审核 (V3) 父主题: SDK调用示例

    来自:帮助中心

    查看更多 →

  • 对接华为云API Explorer

    Interface,应用程序编程接口)将 语音识别 成文字或者将文本转换成逼真的语音等。更多介绍,请参见https://support.huaweicloud.com/sis/index.html。 场景描述 本章节以 自然语言处理 为例,您介绍如何使用华为云 API Explorer 导入连接器。

    来自:帮助中心

    查看更多 →

  • 应用场景

    本节介绍Fabric服务的主要应用场景。 数据工程 高效处理大规模数据,通过并行计算加速数据处理过程,例如数据清洗、转换和聚合。 分布式机器学习 Ray支持分布式训练和调优,可以用于处理大规模数据集和模型,使得模型训练更加高效。 大模型 使用大模型实现智能对话、自动摘要、机器翻译、文本分类、图像生成等任务。

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.911)

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911)

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    --per-token:激活值量化方法,若指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,若指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考部署推理服务,使用量化后权重部署AWQ量化服务。

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.908)

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考部署推理

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910)

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step6

    来自:帮助中心

    查看更多 →

  • 基本概念

    处理、机器翻译、语音识别、智能问答等领域。 向量化模型 向量化模型是将文本数据转换为数值向量的过程。常用于将文本转换为机器可以处理的形式,以便进行各种任务,如文本分类、情感分析、机器翻译等。 多模态模型 多模态模型是指能够处理多种类型数据(如文本、图像、音频等)的机器学习模型。这

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了