华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习文本向量化 更多内容
  • 文本下载

    Key : 'objectname' }, function (err, result) { if(err){ console.error('Error-->' + err); }else{

    来自:帮助中心

    查看更多 →

  • 文本对话

    状态码: 500 服务器内部错误或三方服务器内部错误。 { "error" : { "message" : "Internal server error, please try again later!", "type" : "internal_error",

    来自:帮助中心

    查看更多 →

  • 文本翻译

    "text": "欢迎使用机器翻译服务", "from": "zh", "to": "en", "scene":"common" } Python3语言请求代码示例(翻译中文"欢迎使用机器翻译服务"为英文) # -*- coding:

    来自:帮助中心

    查看更多 →

  • 产品优势

    弱密码扫描,四合一全面检测资产脆弱性。 轻量化部署,一键扫描 依托于华为乾坤安全云服务,将扫描引擎部署在云端,客户侧无需安装任务软件。 扫描配置简单,一键扫描,简单易用。 精准修复优先级推荐, 识别真实风险 基于华为威胁信息库和机器学习智能评估技术,计算漏洞风险评分—漏洞优先级评级VPR。

    来自:帮助中心

    查看更多 →

  • 文本上传

    文本上传 开发过程中,您有任何问题可以在github上提交issue,或者在华为云对象存储服务论坛中发帖求助。接口参考文档详细介绍了每个接口的参数和使用方法。 文本上传用于直接上传字符串。您可以通过ObsClient->putObject直接上传字符串到OBS。以下代码展示了如何进行文本上传:

    来自:帮助中心

    查看更多 →

  • 文本补全

    繁华的城市,人们穿着古代的服饰,用着他听不懂的语言交谈。他意识到自己真的穿越了。李晓在宋朝的生活充满了挑战。他必须学习如何使用新的语言,适应新的生活方式。他开始学习宋朝的礼仪,尝试理解这个时代的文化。在宋朝,李晓遇到了许多有趣的人。他遇到了一位名叫赵敏拿来的小女孩,她聪明伶俐,让

    来自:帮助中心

    查看更多 →

  • 动态文本

    动态文本 图片组件允许文本内容根据数据交互的变化而实时更新,提供更加个性化和互动的体验。 在左侧组件区域,从“常用控件”中,选择“动态文本”组件,并拖拽至设计区,如图1所示。 图1 拖拽动态文本组件到设计区并设置属性 基础配置 文本设置:设置文本内容的字体、大小和颜色等。 水平对

    来自:帮助中心

    查看更多 →

  • 文本解析

    文本解析 解析Nginx日志 提取字符串动态键值对 解析 CS V格式日志 加工复杂JSON数据 解析与更新JSON数据 父主题: 日志加工(邀测)

    来自:帮助中心

    查看更多 →

  • 什么是自然语言处理

    Generation,简称LG)、 语言理解 (Language Understanding,简称LU)、机器翻译(Machine Translation,简称MT)功能。 入门使用 NLP以开放API的方式提供给用户,您可以参考《快速入门》学习并使用NLP服务。 使用方式 如果您是一个开发工程师,熟悉代码编写,想要

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:W4A16 per-group/per-channel,

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:W4A16 per-group/per-channel,W8A16

    来自:帮助中心

    查看更多 →

  • 文本加密

    ge值为错误提示信息。 文本内容加密 在事件模板表单“页面构建”内,拖拽“文本加密”组件至中间画布中,在右侧属性“文本类型”处选择“密码”。 图2 添加文本加密组件 返回圆桌门户,在事件发布页的“文本加密”内输入内容,内容被加密。 图3 事件发布页的文本加密 发布事件后,在事件详情页内容也是加密。

    来自:帮助中心

    查看更多 →

  • 文本上传

    Body: 'Hello OBS' }, function (err, result) { if(err){ console.error('Error-->' + err); }else{ console

    来自:帮助中心

    查看更多 →

  • 基本概念

    75个英文单词,1token≈1.5汉字。 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:per-group Step1 模型量化 可以在Huggingfac

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    convert_awq_to_npu.py --model /home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。 Step4 启动AWQ量化服务 参考部署推理服务,使用量化后权重部署AWQ量化服务。 注:Step3 创建服务启动脚

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step6

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    --per-token:激活值量化方法,若指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,若指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.908)

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了