AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习拟合用户特征属性 更多内容
  • 排序策略

    ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    能力。 特征挖掘十分重要,尤其是具有强表达能力的特征,可以抵过大量的弱表达能力的特征特征的数量并非重点,质量才是,总之强表达能力的特征最重要。 能否挖掘出强表达能力的特征,还在于对数据本身以及具体应用场景的深刻理解,这依赖于经验。 调整参数和超参数。 神经网络中:学习率、学习

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    训练相关概念说明 概念名 说明 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它

    来自:帮助中心

    查看更多 →

  • 用户属性配置

    用户属性配置 成员详情界面可以通过自定义创建用户属性来灵活拓展成员信息。 添加用户属性 登录管理中心。 选择左侧导航栏的“系统管理 > 用户属性配置”。 单击“添加属性”,参数说明如下表1所示。 表1 添加属性参数说明 参数名称 参数说明 属性展示名 在成员扩展属性中显示的名称。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    分解机每个特征对其他域的隐向量都一致,而域感知因子分解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而

    来自:帮助中心

    查看更多 →

  • 管理用户属性定义

    管理用户属性定义 当企业需要配置更多的用户信息,并将其同步至下游应用系统时,可以通过用户属性定义添加用户属性,可通过基本信息、工作信息两个分组设置用户属性,您还可以根据需求自行添加自定义分组。 基本信息:用户的个人属性,如用户名、手机号等。已设置的基本属性不允许删除,只允许新增和修改。

    来自:帮助中心

    查看更多 →

  • 概述

    文件管理 文件管理是 可信智能计算 服务提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    而无法收敛。如果学习率过小,模型收敛的速度可能会非常慢。当batch_size减小时,学习率也应相应地线性减小。预训练时,默认值为:0.00001,范围为[0, 0.001] 学习率调整策略 用于选择学习率调度器的类型。学习率调度器可以在训练过程中动态地调整学习率,以改善模型的训

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 支持配置的用户属性

    支持配置的用户属性 IAM身份中心当前支持两种身份源:IAM身份中心和外部身份提供商。两种身份源当前支持实施ABAC的用户属性如下表所示。这些用户属性是可以在配置访问控制属性时选择的属性值,对应用户的基本信息、联系方式、工作相关信息和地址信息等,选择这些用户属性并给其赋予属性键,用于实施ABAC时进行访问控制决策。

    来自:帮助中心

    查看更多 →

  • 基本概念

    AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。 在旧

    来自:帮助中心

    查看更多 →

  • 特征选择

    特征选择 删除列 删除特征列的场景有很多,例如:两个特征呈线性变化关系,为减少模型训练的开销,删除其中一个特征列。 操作步骤如下所示。 单击界面右上角的图标,选择“数据处理 > 特征选择 > 删除列”,界面新增“删除列”内容。 对应参数说明,如表1所示。 表1 参数说明 参数 参数说明

    来自:帮助中心

    查看更多 →

  • 最新动态

    为后续特征选择、模型训练的数据集。 公测 创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • 筛选特征

    根据计算得出的iv值,企业A调整了训练使用的特征,没有选用双方提供的特征全集,去掉了部分iv值较低的特征,减少了无用的计算消耗。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 配置MRS集群用户私有属性

    配置 MRS 集群用户私有属性 admin用户或绑定Manager_administrator角色的管理员用户,可以在Manager配置私有属性功能开关,用于支持用户(集群中所有业务用户)设置或取消自己的私有(Independent)属性。 开启私有属性开关后,需要业务用户登录后设置I

    来自:帮助中心

    查看更多 →

  • 特征操作

    检查“已选择特征”是否为用户选择的特征列。 配置“变换特征数”,保留指定“变换特征数”的特征列。 单击“确定”,执行信息熵。 在“特征操作流总览”区域会新增一个“信息熵”节点。 新增特征 新增特征支持用户基于已有的特征列,按照样本数据行的维度,通过求和、求均值,构造出新的特征列。例如,两个特征列ID1(2

    来自:帮助中心

    查看更多 →

  • 特征画像

    。这些类别,对应到后面的特征选择、算法推荐,会有不同的策略,有效提升模型的构建效率。 单击“选择数据”左下方的“特征画像”。 新增“特征画像”内容,如图1所示。 图1 特征画像 单击“特征画像”代码框左侧的图标,运行代码。 通过运行结果左侧两个图可以直观的看一下原始数据和数据的密

    来自:帮助中心

    查看更多 →

  • 呼叫特征

    呼叫特征 表1 呼叫特征说明 值 说明 0 普通客户呼叫 1 来自话务员 2 长途客户呼叫 3 CTI收到网络路由实呼后发起的路由 4 国际长途来话 40 预约呼出 41 预占用呼出 42 预连接呼出 43 虚呼入呼出 44 预览呼出 45 回呼请求 51 内部求助 父主题: 附录

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了