AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习模型文件格式 更多内容
  • 准备文本分类数据

    准备文本分类数据 使用ModelArts自动学习构建模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域。 数据集要求 文件格式要求为txt或者csv,文件大小不能超过8MB。 以换行符作为分隔符,每行数据代表一个标注对象。 文本分类目前只支持中文。

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 创建模型

    创建模型 在Fabric部署推理服务的时候除了使用公共模型,用户也可以自己创建模型。用户可以在Fabric模型页面创建模型,这些模型是属于用户个人,其他用户不可见。 约束与限制 创建模型的通用约束如下: 需要是Fabric支持的基模型,否则不支持,基模型列表如下: 表1 基模型列表

    来自:帮助中心

    查看更多 →

  • COST02-01 建立云预算与预测流程

    张)的预测,可以有效改进并提升企业的财务预测准确率。 相关服务和工具 使用成本中心的成本分析,可以根据客户的历史支出预测未来时间范围的成本。成本分析的成本和使用量预测,会参考不同的计费模式特征,结合机器学习和基于规则的模型来分别预测所有消费模式的成本和使用量。 使用成本分析确定基

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • 排序策略

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    learning_rate 学习学习率是每一次迭代中梯度向损失函数最优解移动的步长。 weight_decay 权重衰减因子 对模型参数进行正则化的一种因子,可以缓解模型过拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数,一开始以较小的学习率去更新参数,然后再使用预设学习率,有效避免模型震荡。

    来自:帮助中心

    查看更多 →

  • 重新学习服务器

    重新学习服务器 如果已完成进程白名单扩展,但仍然存在较多可信进程运行误报或您的服务器业务存在变更,您可以设置HSS重新学习服务器,校准HSS的应用进程情报数据,避免误报。 重新学习服务器 登录管理控制台。 在页面左上角选择“区域”,单击,选择“安全与合规 > 企业主机安全”,进入主机安全平台界面。

    来自:帮助中心

    查看更多 →

  • 自动学习中部署上线是将模型部署为什么类型的服务?

    自动学习中部署上线是将模型部署为什么类型的服务? 自动学习中部署上线是将模型部署为在线服务,您可以添加图片或代码进行服务测试,也可以使用URL接口调用。 部署成功后,您也可以在ModelArts管理控制台的“部署上线 > 在线服务”页面中,查看到正在运行的服务。您也可以在此页面停止服务或删除服务。

    来自:帮助中心

    查看更多 →

  • 模型配置文件编写说明

    模型配置文件编写说明 模型开发者发布模型时需要编写配置文件config.json。模型配置文件描述模型用途、模型计算框架、模型精度、推理代码依赖包以及模型对外API接口。 配置文件格式说明 配置文件为JSON格式,参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 描述

    来自:帮助中心

    查看更多 →

  • 天筹求解器服务简介

    天筹求解器服务简介 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 父主题: 服务介绍

    来自:帮助中心

    查看更多 →

  • AI防护者初始化

    AI防护者初始化 登录AI防护者管理页面,URL地址为“https://<管理节点IP>:8000” 启用主动学习机器学习设置>主动学习>选择网站>应用 图1 AI防护者初始化1 查看学习内容 图2 AI防护者初始化2 父主题: AI防护者初始化

    来自:帮助中心

    查看更多 →

  • 转换逻辑模型为物理模型

    转换逻辑模型为物理模型 功能介绍 转换逻辑模型为物理模型,转换成功则显示转换后的目标模型信息。 异常:目标模型信息的“id”等属性为null时,则需要调用《获取操作结果》接口查看具体报错信息:GET https://{endpoint}/v1/{project_id}/design/operation-results

    来自:帮助中心

    查看更多 →

  • 使用量类型明细账单文件格式介绍

    地理范围的云服务区域。 华北-北京一 可用区 String 可用区是同一服务区内,电力和网络互相独立的地理区域,一般是一个独立的物理机房,这样可以保证可用区的独立性。一个云服务区内有多个可用区,一个可用区发生故障后不会影响同一云服务区内的其它可用区,可用区之间通过内网访问。 可用区1

    来自:帮助中心

    查看更多 →

  • 模型测试

    “是否绘图”请选择“是”,可以通过绘图查看模型的测试验证效果。 图3 异常检测模型测试 单击“异常检测模型测试”代码框左侧的图标。等待模型测试完成。 模型测试打印结果示例,如图4所示。截图仅为模型测试打印结果的一部分,具体以实际打印结果为准。 图中黑点是模型预测的异常点,红点是原始异常点。 图4 模型测试结果 父主题:

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 硬盘故障检测模板会预置模型训练工程,无需关注,下面会提供端到端的操作流程,帮助用户快速熟悉模型训练界面操作。 单击菜单栏中的“模型训练”,进入模型训练首页。 可以看到预置的“hardisk_detect”模型训练工程,这是硬盘故障检测模板预置的模型训练工程,本次不使用。

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 模型管理简介 创建模型 模型推理

    来自:帮助中心

    查看更多 →

  • 测试模型

    测试模型 用测试数据测试模型的泛化能力。训练数据可以是带标签或者不带标签的数据,测试数据一定是带标签的数据,方便评估模型执行效果。 单击“训练模型”左下方的“测试模型”,新增“测试模型”内容。 参数配置均保持默认值。 单击“测试模型”代码框左侧的图标,进行模型评估。 模型测试效果会通过表格的形式在下方展示。

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 特征和算法确定后,可以开始训练模型。 训练模型 单击“模型选择”左下方的“训练模型”。 新增“训练模型”内容,如图1所示。 图1 训练模型 单击“训练模型”代码框左侧的图标,进行模型训练。 模型训练完成后,界面下方展示模型的评估效果。 第一列内容的含义如下所示: 0:标注为0的所有样本。可以理解为标签。

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 单击菜单栏中的“模型管理”,可在“模型管理”界面查看打包好的模型,如图1所示。 图1 模型管理 父主题: 使用模型训练服务快速训练算法模型

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了