产生式模型机器学习 更多内容
  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 分布式模型训练

    分布模型训练 分布训练功能介绍 创建单机多卡的分布训练(DataParallel) 创建多机多卡的分布训练(DistributedDataParallel) 示例:创建DDP分布训练(PyTorch+GPU) 示例:创建DDP分布训练(PyTorch+NPU) 父主题:

    来自:帮助中心

    查看更多 →

  • 基本概念

    特征操作主要是对数据集进行特征处理。 在旧版体验开发模式下,模型训练服务支持的特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互开发模式,是界面右上角的图标中的“数据处理”菜单下面的数据处理算子。

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    Standard模型训练 ModelArts Standard模型训练提供容器化服务和计算资源管理能力,负责建立和管理机器学习训练工作负载所需的基础设施,减轻用户的负担,为用户提供灵活、稳定、易用和极致性能的深度学习训练环境。通过ModelArts Standard模型训练,用户可以专注于开发、训练和微调模型。

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 概述

    文件管理是 可信智能计算 服务提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。 父主题:

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布场景下提供此系统表,但AI能力不可用。 父主题: AI

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • ModelArts

    ModelArts不仅支持自动学习功能,还预置了多种已训练好的模型,同时集成了Jupyter Notebook,提供在线的代码开发环境。 业务开发者 使用自动学习构建模型 AI初学者 使用自定义算法构建模型 免费体验 ModelArts 免费体验CodeLab 自动学习 口罩检测(使用新版自动学习实现物体检测)

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 使用流程

    评测镜像 Octopus平台各服务均提供用户 自定义镜像 功能,此模块对镜像提供了统一管理。 仿真镜像 仿真场景 仿真场景模块支持对单个仿真场景的增删改查操作。用户可根据场景类型,依据平台提示,上传符合要求的场景文件。场景创建完毕后,用户可选择在线仿真机器加载场景,通过仿真器内置算法检验场景质量。

    来自:帮助中心

    查看更多 →

  • AI原生应用引擎基本概念

    ClickHouse是一个开源的分布数据库管理系统,主要用于在线分析处理(OLAP)场景。它具有高性能、高可靠性、高可扩展性等特点,可以处理海量数据,支持复杂的查询和数据分析操作。ClickHouse支持SQL语言,同时还提供了许多扩展功能,如数据压缩、数据分区、分布查询等。它被广泛应用于互联网企业、金融、电商、游戏等领域。

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    训练相关概念说明 概念名 说明 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情

    来自:帮助中心

    查看更多 →

  • 套餐包

    ModelArts服务支持购买套餐包,根据用户选择使用的资源不同进行收费。您可以根据业务需求选择使用不同规格的套餐包。 ModelArts提供了AI全流程开发的套餐包,面向有AI基础的开发者,提供机器学习和深度学习的算法开发及部署全功能,包含数据处理、模型开发、模型训练、模型管理和部署上线流程。

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    ,方便后续扩展。 model_name name 模型的实例名,每个模型对应AiEngine在线学习进程中的一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型服务的database名,每个模型只针对单个database。此参数决定训练时所使用的数据。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了