机器学习模型的在线训练 更多内容
  • 训练模型

    议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”

    来自:帮助中心

    查看更多 →

  • 训练模型

    议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”

    来自:帮助中心

    查看更多 →

  • 训练模型

    很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发模型评估”步骤,详细操作指引请参见评估模型。 父主题: 多语种文本分类工作流

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少的情况,建议每个标签样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 训练模型

    据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发模型评估”步骤,详细操作指引请参见评估模型。 父主题: 无监督车牌检测工作流

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习方式帮助不具备算法开发能力业务开发者实现算法开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练参数自动化选择和模型自动调优自动学习功能,让零AI基础业务开发者可快速完成模型训练和部署。 Mo

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 将样例数据中训练数据集加载至当前学件项目中,进行数据预处理和模型训练。 单击代码框左下方“加载数据”,弹出“加载数据”代码框。 也可以单击界面右上角,在弹出算子框中,选择“学件 > 多层嵌套异常检测学件 > 加载数据”,添加“加载数据”代码框。 需要配置参数如下所示,其余参数保持默认值即可。

    来自:帮助中心

    查看更多 →

  • 训练模型

    议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”

    来自:帮助中心

    查看更多 →

  • 训练模型

    Pro控制台选择“HiLens安全帽检测”可训练模板新建技能,并选择训练数据集,详情请见选择数据。 训练模型 在“应用开发>模型训练”页面,配置训练参数,开始训练模型。 输出路径 模型训练后,输出模型和数据存储在OBS路径。单击输入框,在输出路径对话框中选择OBS桶和文件夹,然后单击“确定”。 预训练模型 当前

    来自:帮助中心

    查看更多 →

  • 训练模型

    议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练详情”,包括“交并比变化情况”和“损失变化”。 图1 模型训练 模型如何提升效果 检查图片标注是否准确,第二相区域标注工作量较大,建议基于自动标注结果进一步优化标注精度。 可根据损失函数选择适当训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。 后续操作

    来自:帮助中心

    查看更多 →

  • 训练模型

    议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 企业A在完成特征选择后,可以单击右下角“启动训练”按钮,配置训练超参数并开始训练。 等待训练完成后就可以看到训练模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步所选特征和超参数,直至训练出满意模型。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 训练模型

    技能,并选择训练数据集,详情请见选择数据。 训练模型 在“应用开发>模型训练”页面,配置训练参数,开始训练模型。 输出路径 模型训练后,输出模型和数据存储在OBS路径。单击输入框,在输出路径对话框中选择OBS桶和文件夹,然后单击“确定”。 预训练模型 当前服务提供安全帽检测预置模型“saved_model

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供一站式深度学习平台服务,内置大量优化网络模型,以便捷、高效方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • 概述

    多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出模型权重在某一数据集上预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少情况,联合多个参与者共同样本不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    新建联邦学习工程:创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例基础模型包。 新建训练服务:调用已归档模型包,对新数据集进行训练,得到训练结果。 新建超参优化服务:通过训练结果对比,为已创建训练工程选择一组最优超参组合。

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    指按某种策略由已知判断推出新判断思维过程。人工智能领域下,由机器模拟人类智能,使用构建神经网络完成推理过程。 在线推理 在线推理是对每一个推理请求同步给出推理结果在线服务(Web Service)。 批量推理 批量推理是对批量数据进行推理批量作业。 昇腾芯片 昇腾芯片又叫

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习图像分类或物体检测算法时,标注完成数据在进行模型训练后,训练结果为图片异常。针对不同异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 修订记录

    2021-03-30 更新“模型管理”章节。 2021-02-25 更新“模型验证”章节。 2021-01-30 更新“模型验证”章节。 新增“异步推理”章节。 更新“发布推理服务”章节。 2020-11-30 优化创建联邦学习工程章节,加入在模型训练服务创建联邦学习工程和联邦学习服务关系描述。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了