机器学习模型的在线训练 更多内容
  • 产品优势

    通过对海量数据深入学习和分析,盘古大模型能够捕捉语言中细微差别和复杂模式,无论是在词汇使用、语法结构,还是语义理解上,都能达到令人满意精度。此外,模型具备自我学习和不断进化能力,随着新数据持续输入,其性能和适应性不断提升,确保在多变语言环境中始终保持领先地位。 应用场景灵活 盘

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    取值范围:字符型,需要符合数据属性名命名规范。 attribute_name 在监督学习任务中训练模型目标列名(可进行简单表达式处理)。 取值范围:字符型,需要符合数据属性名命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。

    来自:帮助中心

    查看更多 →

  • 排序策略

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow

    来自:帮助中心

    查看更多 →

  • Standard Workflow

    Workflow是开发者基于实际业务场景开发用于部署模型或应用流水线工具,核心是将完整机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成效率。 ModelArts

    来自:帮助中心

    查看更多 →

  • 基本概念

    ,调整模型softmax输出层中预测词概率。其值越大,则预测词概率方差减小,即很多词被选择可能性增大,利于文本多样化。 多样性与一致性 多样性和一致性是评估LLM生成语言两个重要方面。 多样性指模型生成不同输出之间差异。一致性指相同输入对应不同输出之间一致性。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    域感知因子分解机是因子分解机改进版本,因子分解机每个特征对其他域隐向量都一致,而域感知因子分解机每个特征对其他每个域都会学习一个隐向量,能够达到更高精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达学习,同时学习高阶和

    来自:帮助中心

    查看更多 →

  • 模型训练计费项

    假设用户于2023年4月1日10:00:00创建了一个使用专属资源池训练作业,并在11:00:00停止运行。按照存储费用结算,那么运行这个训练作业费用计算如下: 存储费用:训练数据通过对象存储服务(OBS)上传或导出,存储计费按照OBS计费规则。 综上,训练作业运行费用 = 存储费用 父主题: 计费项

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    train_labels, epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 模型训练存储加速

    HPC型文件系统来加速对OBS对象存储中数据访问,并将生成结果数据异步持久化到OBS对象存储中长期低成本保存。 图1 基于OBS+SFS Turbo存储解决方案 OBS + SFS Turbo存储加速具体方案请查看: 面向AI场景使用OBS+SFS Turbo存储加速实践。 设置训练存储加速 当完成上传数据至OBS并预热到SFS

    来自:帮助中心

    查看更多 →

  • 准备模型训练代码

    准备模型训练代码 预置框架启动文件启动流程说明 开发用于预置框架训练代码 开发用于 自定义镜像 训练代码 自定义镜像训练作业配置节点间SSH免密互信 父主题: 使用ModelArts Standard训练模型

    来自:帮助中心

    查看更多 →

  • 订购模型训练服务

    四”。 用户可以单击“了解计费详情”,详细了解模型训练服务提供资源、规格和相应价格信息。同时,用户在使用具体资源时,模型训练服务会在界面给出醒目的计费提示。 单击“立即使用”,服务订购完成。 父主题: 学件开发指南

    来自:帮助中心

    查看更多 →

  • 订购模型训练服务

    ”。 用户可以单击“了解计费详情”,详细了解模型训练服务提供资源、规格和相应价格信息。同时,用户在使用具体资源时,模型训练服务会在界面给出醒目的计费提示。 单击“立即使用”,服务订购完成。 父主题: 使用模型训练服务快速训练算法模型

    来自:帮助中心

    查看更多 →

  • 模型训练服务首页

    模型训练服务首页 如何回到模型训练服务首页? 创建项目公开至组参数是什么含义? 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    取值范围:字符型,需要符合数据属性名命名规范。 attribute_name 在监督学习任务中训练模型目标列名(可进行简单表达式处理)。 取值范围:字符型,需要符合数据属性名命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。

    来自:帮助中心

    查看更多 →

  • 训练盘古大模型

    训练盘古大模型 选择模型训练方法 创建训练任务 查看训练任务详情与训练指标 常见训练报错与解决方案

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里软件无法满足您程序运行需求时,您还可以基于这些基础镜像制作一个新镜像并进行训练训练作业预置框架介绍

    来自:帮助中心

    查看更多 →

  • 训练预测分析模型

    训练预测分析模型 创建自动学习后,将会进行模型训练,得到预测分析模型模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功项目名称,查看当前工作流执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型自动训练。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时数据表,记录机器学习模型配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时数据表,记录机器学习模型配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • 自动学习生成的模型,存储在哪里?支持哪些其他操作?

    自动学习生成模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成模型,不支持下载使用。 图1 自动学习生成模型

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了