AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习离散特征 更多内容
  • 基本概念

    可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。 在旧版体

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    假设您有如下数据集(只展示部分数据),由于数据不够完整,如job、gender等字段均存在一定程度的缺失。为了不让机器理解形成偏差、以达到机器学习的使用标准,需要基于对数据的理解,对数据进行特征预处理。例如: job字段是多类别的变量,其值0、1、2实际没有大小之分,一般会将该特征转换成向量,如值为0用向量[1, 0

    来自:帮助中心

    查看更多 →

  • 产品术语

    数据集的实例,有具体的数据。 T 特征操作 特征操作主要是对数据集进行特征处理。 在旧版体验式开发模式下,模型训练服务支持的特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLa

    来自:帮助中心

    查看更多 →

  • 特征选择

    特征选择 删除列 删除特征列的场景有很多,例如:两个特征呈线性变化关系,为减少模型训练的开销,删除其中一个特征列。 操作步骤如下所示。 单击界面右上角的图标,选择“数据处理 > 特征选择 > 删除列”,界面新增“删除列”内容。 对应参数说明,如表1所示。 表1 参数说明 参数 参数说明

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 概述

    特征的多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • 特征操作

    特征离散化是将特征列连续的样本数据离散化为[0,离散数量-1]区间内的整型数据。 特征离散化操作步骤如下。 单击表头,选中需要执行特征离散化的特征列。 选中的特征列必须为数值型。 单击“特征操作”,从下拉框中选择“特征离散化”。 弹出“特征离散化”对话框。参数配置如下所示: 检查“已选择特征”是否为用户选择的特征列。

    来自:帮助中心

    查看更多 →

  • 特征画像

    特征画像 特征画像的作用,就是对数据进行分析,把其中一些基本特征提取出来,如:周期性、离散度、时序规律、最值、采样频率等,计算KPI曲线特点(包括周期性、趋势性、噪声、离散性、随机性等)。根据计算的曲线特点,判断KPI的大类别(毛刺型、阶梯型、周期型、离散型、稀疏型、多模态型等)

    来自:帮助中心

    查看更多 →

  • 呼叫特征

    呼叫特征 表1 呼叫特征说明 值 说明 0 普通客户呼叫 1 来自话务员 2 长途客户呼叫 3 CTI收到网络路由实呼后发起的路由 4 国际长途来话 40 预约呼出 41 预占用呼出 42 预连接呼出 43 虚呼入呼出 44 预览呼出 45 回呼请求 51 内部求助 父主题: 附录

    来自:帮助中心

    查看更多 →

  • 筛选特征

    根据计算得出的iv值,企业A调整了训练使用的特征,没有选用双方提供的特征全集,去掉了部分iv值较低的特征,减少了无用的计算消耗。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 特征工程

    行为表。 全局特征信息文件 用户在使用特征工程之前,需要提供一份全局的特征信息文件,后续的特征工程、在线模块都会用到该文件。 文件数据信息请参见全局特征信息文件。 当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 保留已有宽表

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线特征工程

    0.2。 “用户自定义离散”:根据业务需求限定“离散点”。例如,根据age进行离散,设置年龄离散点分别为3、9、15即年龄会按照0-3、3-9、9-15进行散;单击添加离散点。 “不离散”:(默认)不做归一化,不对数据做处理。 待提取物品特征 排序模型需要经特征工程处理后的数据,

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 如何选中全量特征列? 算法工程处理的时候必须要先采样吗? 特征处理操作完成后怎么应用于数据集全量数据? 特征工程和算法工程的关系? JupyterLab环境异常怎么处理? 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 特征工程简介 Python和Spark开发平台 JupyterLab开发平台 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 特征管理

    特征管理 特征操作接口 父主题: 应用模型

    来自:帮助中心

    查看更多 →

  • 获取数据详情

    CONTINUOUS--连续型 2.DISCRETE--离散型 3.MULTIHOT--multihot型 field_size Integer 只有离散类型特征支持该属性,表示离散特征取值范围 请求示例 获取数据集详情 get https://x.x.x.x:12345/v1/ag

    来自:帮助中心

    查看更多 →

  • 数据转换

    特征离散化是将特征列连续的样本数据离散化为[0,离散数量-1]区间内的整型数据。 操作步骤如下所示。 单击界面右上角的图标,选择“数据处理 > 数据转换 > 特征离散化”,界面新增“特征离散化”内容。 对应参数说明,如表4所示。 表4 参数说明 参数 参数说明 列筛选方式 特征列的筛选方式,有如下两种:

    来自:帮助中心

    查看更多 →

  • 特征工程

    。 图5 特征工程服务 单击“Publish”,将特征工程发布成服务。 发布成功后,会弹出成功提示框,单击“OK”。 在菜单栏中,单击“特征工程”,进入“特征工程管理”界面。 单击“已发布服务”页签,查看特征工程服务,如图6所示。 图6 特征工程服务 单击特征工程服务行对应“操作”列的图标。

    来自:帮助中心

    查看更多 →

  • 特征操作接口

    "failure": [] } 状态码 状态码 描述 200 successful operation. 400 Bad Request. 500 Internal Server Error. 错误码 请参见错误码。 父主题: 特征管理

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了