AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习聚类回归 更多内容
  • 适用于人工智能与机器学习场景的合规实践

    账号下的所有 CTS 追踪器未追踪指定的OBS桶,视为“不合规” mrs-cluster-kerberos-enabled MRS 集群开启kerberos认证 mrs MRS集群未开启kerberos认证,视为“不合规” mrs-cluster-no-public-ip MRS集群未绑定弹性公网IP mrs

    来自:帮助中心

    查看更多 →

  • 什么是ATGen

    智能算法加持下ATGen人机交互模式:在测试过程中,机器自主解析文档和数据,自动生成API场景级操作依赖ODG(OperationDependencyGraph)图,测试人员只需做适量修订,机器自主探索遍历ODG图执行,同步并行完成结果的判定和报告的生成,机器对成功和失败的结果分层聚类,测试人员只需按类批量确认结果。

    来自:帮助中心

    查看更多 →

  • 机器未重启

    原因分析 该机器在进行过某些Windows功能的启用或关闭后未进行重启。 处理方法 请重启机器。 must log in to complete the current configuration or the configuratio\r\nn in progress must be

    来自:帮助中心

    查看更多 →

  • 产品概述

    常。 通过APM找到性能瓶颈后,CPTS(云性能测试服务)关联分析生成性能报表。 通过智能算法学习历史指标数据,APM多维度关联分析异常指标,提取业务正常与异常时上下文数据特征,通过聚类分析找到问题根因。 产品优势 非侵入式性能数据采集,无需修改业务代码即可轻松接入APM,数据源包括如下:

    来自:帮助中心

    查看更多 →

  • 查询聚类分析作业详情

    floats 子任务运行时长(秒)。 数组长度:1 - 30 num_molecules Integer 分子聚类任务中的分子总数。 success_count Integer 聚类成功的分子数。 请求示例 无 响应示例 状态码: 200 OK { "basic_info" :

    来自:帮助中心

    查看更多 →

  • 聚类分析作业管理

    聚类分析作业管理 创建聚类分析作业 查询聚类分析作业详情 父主题: API(盘古辅助制药平台)

    来自:帮助中心

    查看更多 →

  • 应用场景

    全链路性能追踪:Web服务、缓存、数据库全栈跟踪,性能瓶颈轻松掌握。 故障智能诊断 业务痛点 海量业务下,出现百种指标监控、KPI数据、调用跟踪数据等丰富但无关联的应用运维数据,如何通过应用、服务、实例、主机和事务等多视角分析关联指标和告警数据,自动完成故障根因分析;如何基于历史数据学习与运维经验库,对异常事务智能分析给出可能原因。

    来自:帮助中心

    查看更多 →

  • 排序策略

    。 逻辑斯蒂回归-LR 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。单击查看逻辑斯蒂回归详情信息。 表1

    来自:帮助中心

    查看更多 →

  • 创建可信联邦学习作业

    创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 查询靶点口袋分子设计作业详情

    value_range ValueRange object 区间上下限,仅回归型存在。 description String 模型描述信息。 表13 ValueRange 参数 参数类型 描述 lower Float 区间下限,仅回归型存在。 upper Float 区间上限,仅回归型存在。 表14

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 聚类系数算法(Cluster Coefficient)

    聚类系数算法(Cluster Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • 使用ATGen

    单击接口左侧,可以将“默认值的组合覆盖详情”下载到本地。 聚类分析 ATGen支持对执行结果进行分层聚类,包括对执行成功的测试链路和失败的链路分布进行聚类,通过状态码、错误接口、直接依赖、错误类型层层递进分类。 选择“聚类分析”页签,页面展示不同执行结果类型的聚类结果。 展开对应的状态码,可在同类的成

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 如何删除机器人

    如何删除机器人 试用版本机器人 对于试用版本的智能问答机器人,可以通过“删除”操作将机器人删除,删除后不支持恢复。 图1 删除试用机器人 包周期版本机器人 对于包周期计费的智能问答机器人,可执行“退订”操作。 登录对话机器人服务管理控制台。 在控制台中选择“费用与成本”。 进入费

    来自:帮助中心

    查看更多 →

  • 测试机器人

    测试机器人 操作步骤 选择“配置中心>机器人管理>流程配置”,进入流程配置界面。 选择“智能机器人”。在需要测试的接入码最后一列单击“呼叫测试”。 在弹出的测试对话窗口中单击“开始呼叫”,开始测试机器人。 图1 测试机器人 父主题: 配置一个预约挂号机器人(任务型对话机器人)

    来自:帮助中心

    查看更多 →

  • 配置机器人跟踪

    配置机器人跟踪 前提条件 存在已发布的IVR流程且配有转移图元。 操作步骤 以租户管理员角色登录AICC,选择“配置中心 > 机器人管理>流程配置 ”,进入管理界面。 选择“系统管理>系统设置”界面,选择跟踪设置页签。 机器人跟踪单击“”,进入机器人跟踪配置页面。 选择机器人接入码,单击“确定”,接入码配置完成。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了