华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习回归聚类 更多内容
  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 实时聚类

    1.0) OVER (ORDER BY proctime RANGE BETWEEN INTERVAL '60' MINUTE PRECEDING AND CURRENT ROW) AS centroidCE, ALL_POINTS_OF_CLUSTER(ARRAY[c,e]

    来自:帮助中心

    查看更多 →

  • 实时聚类

    1.0) OVER (ORDER BY proctime RANGE BETWEEN INTERVAL '60' MINUTE PRECEDING AND CURRENT ROW) AS centroidCE, ALL_POINTS_OF_CLUSTER(ARRAY[c,e]

    来自:帮助中心

    查看更多 →

  • 创建分子聚类作业

    创建分子聚类作业 功能介绍 创建分子聚类作业。 URI POST /v1/{project_id}/eihealth-projects/{eihealth_project_id}/drug-jobs/{job_id}/cluster 表1 路径参数 参数 是否必选 参数类型 描述

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    旗舰版 适用于对机器人答准率有高要求,数据样本大的场景,包括以下功能模块: 包含“专业版”功能,以及以下功能。 深度学习模型训练 如何修改机器人规格 登录CBS控制台。 在智能问答机器人列表中,选择“操作”列的“规格修改”。 图1 规格修改 依据使用需求修改机器人的规格。 图2 修改问答机器人规格

    来自:帮助中心

    查看更多 →

  • 聚类系数(cluster

    聚类系数(cluster_coefficient)(1.0.0) 表1 response_data参数说明 参数 类型 说明 cluster_coefficient Double 聚类系数。 statistics Boolean 是否仅返回全图平局聚类系数,默认为true。 父主题:

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 什么是对话机器人服务

    什么是对话机器服务 对话机器服务(Conversational Bot Service) 是一款基于人工智能技术,针对企业应用场景开发的云服务,主要提供智能问答机器人功能。智能问答机器人旨在帮助企业快速构建,发布和管理基于知识库的智能问答机器人系统。 对话机器服务包含以下子服务:

    来自:帮助中心

    查看更多 →

  • 处理问题聚类任务

    处理问题聚类任务 操作步骤 选择“配置中心>机器人管理>语义理解服务”,进入语义理解服务页面。 选择“检查训练 > 问题聚类任务”。单击“启动聚类任务”,填写需要进行聚类分析的会话生成时间段,单击“启动”。 请确保所选的时间段内存在可用于分析的会话记录。 导入用户列表后,聚类任务仅分析该号码对应的会话记录。

    来自:帮助中心

    查看更多 →

  • 聚类系数算法(cluster

    说明 cluster_coefficient Double 平均聚类系数 vertex_cluster_coefficient List 各节点的聚类系数,格式: [{vertexId : vertexClusterCoefficient},...], 其中, vertexId:string类型。

    来自:帮助中心

    查看更多 →

  • 查询分子属性预测作业详情

    value_range ValueRange object 区间上下限,仅回归型存在。 description String 模型描述信息。 表11 ValueRange 参数 参数类型 描述 lower Float 区间下限,仅回归型存在。 upper Float 区间上限,仅回归型存在。 表12

    来自:帮助中心

    查看更多 →

  • 应用场景

    能原因。 业务实现 APM提供故障智能诊断能力,基于机器学习算法自动检测应用故障。当URL跟踪出现异常时,通过智能算法学习历史指标数据,多维度关联分析异常指标,提取业务正常与异常时上下文数据特征,如资源、参数、调用结构,通过聚类分析找到问题根因。

    来自:帮助中心

    查看更多 →

  • 应用场景

    全链路性能追踪:Web服务、缓存、数据库全栈跟踪,性能瓶颈轻松掌握。 故障智能诊断 业务痛点 海量业务下,出现百种指标监控、KPI数据、调用跟踪数据等丰富但无关联的应用运维数据,如何通过应用、服务、实例、主机和事务等多视角分析关联指标和告警数据,自动完成故障根因分析;如何基于历史数据学习与运维经验库,对异常事务智能分析给出可能原因。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“FiBiNET”三

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    账号下的所有 CTS 追踪器未追踪指定的OBS桶,视为“不合规” mrs-cluster-kerberos-enabled MRS 集群开启kerberos认证 mrs MRS集群未开启kerberos认证,视为“不合规” mrs-cluster-no-public-ip MRS集群未绑定弹性公网IP mrs

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • 最新动态

    创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级

    来自:帮助中心

    查看更多 →

  • 分子优化

    统开始进行分析,同时显示“聚类分析中”。 图16 聚类分析 待聚类分析完成后,单击“查看聚类结果”。进入聚类结果页。 在聚类结果页面,可以查看每个聚类的分子数量等信息。 图17 查看聚类结果 单击某个聚类的操作列的“查看详情”,即可进入聚类详情页面,聚类详情页支持以卡片、列表以及

    来自:帮助中心

    查看更多 →

  • 产品概述

    等快速诊断应用性能异常。 通过APM找到性能瓶颈后,CPTS(云性能测试服务)关联分析生成性能报表。 通过智能算法学习历史指标数据,APM多维度关联分析异常指标,提取业务正常与异常时上下文数据特征,通过聚类分析找到问题根因。 产品优势 非侵入式性能数据采集,无需修改业务代码即可轻松接入APM,数据源包括如下:

    来自:帮助中心

    查看更多 →

  • 聚类系数算法(Cluster Coefficient)

    聚类系数算法(Cluster Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。

    来自:帮助中心

    查看更多 →

  • 其他操作

    添加领域 添加实体 添加敏感词 新增知识灰度规则 模型管理 管理机器人测试用例 审核历史消息 处理问题聚类任务 配置智能引擎参数 呼叫历史管理 查看流程分析 流程检查 新增灰度规则 2D数字人设置 父主题: 配置智能机器

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了