AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习加性注意力模型 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 概述

    文件管理是 可信智能计算服务 提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用及可维护。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。 父主题: 可信联邦学习作业

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    数据准备主要是指收集和预处理数据的过程。 按照确定的分析目的,有目的的收集、整合相关数据,数据准备是AI开发的一个基础。此时最重要的是保证获取数据的真实可靠。而事实上,不能一次将所有数据都采集全,因此,在数据标注阶段你可能会发现还缺少某一部分数据源,反复调整优化。 训练模型 俗称“建模”,指通过分析手段、方

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    给输入数据噪音的尺度 给输入数据噪音的尺度,定义了给输入数据噪音的尺度。这个值越大,添加的噪音越强烈,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0,1]。 给输出数据噪音的概率 给输出数据噪音的概率,定义了给输出数据噪音的概率。噪音是一种正

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    随机和创造,调整模型的softmax输出层中预测词的概率。其值越大,则预测词的概率的方差减小,即很多词被选择的可能增大,利于文本多样化。 多样与一致 多样和一致是评估LLM生成语言的两个重要方面。 多样模型生成的不同输出之间的差异。一致指相同输入对应的不同输出之间的一致性。

    来自:帮助中心

    查看更多 →

  • 方案概述

    提高效率和准确。 方案架构 该解决方案基于华为云 AI开发平台 ModelArts构建,一键部署汽车价值评估系统。 图1 方案架构图 该解决方案会部署如下资源: 创建两个对象存储服务 OBS桶,一个用于存储训练数据集及ModelArts算法、推理脚本、配置文件、模型数据;另一个用于存储数据集及数据集预测结果。

    来自:帮助中心

    查看更多 →

  • 模型包完整性校验

    模型包完整校验 可以对下载的模型包进行完整校验,判断在下载过程中是否存在篡改和丢包现象。 单击模型包所在行,对应“操作”列的图标。 模型管理界面右上角展示该模型包的SHA256码,如图1所示。 图1 模型包下载前的SHA256码 单击模型所在行,对应“操作”列的图标,下载模型包,并保存至本地目录。

    来自:帮助中心

    查看更多 →

  • 修订记录

    ,对应刷新模型管理。 2020-04-16 变更点如下: 模型训练服务首页项目列表“开发环境”列优化,对应刷新模型训练服务首页简介。 Jupyterlab环境功能变更,对应刷新JupyterLab开发平台。 模型训练功能优化,对应刷新模型训练。 模型管理新增模型包完整校验,对应新增模型包完整性校验。

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • 计费说明

    自动驾驶提升与优化服务 自动驾驶技术支持与优化服务包 针对自动驾驶业务场景,提供自动驾驶工具支持、算子优化、模型调优、算法调优等服务,每套折合10人天投入工作量; 188,160.00 每套 计费模式 本服务为一次计费方式。 变更配置 本服务如已启动交付,不支持退订和变更,用户可以根据自身业务的实际

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    CREATE MODEL 功能描述 训练机器学习模型并保存模型。 注意事项 模型名称具有唯一约束,注意命名格式。 AI训练时长波动较大,在部分情况下训练运行时间较长,设置的GUC参数statement_timeout时长过短会导致训练中断。建议statement_timeout设置为0,不对语句执行时长进行限制。

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    CREATE MODEL 功能描述 CREATE MODEL语句用于训练机器学习模型并保存模型。 注意事项 模型名称具有唯一约束,注意命名格式。 AI训练时长波动较大,在部分情况下训练运行时间较长,设置的GUC参数statement_timeout时长过短会导致训练中断。建议s

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    特征的多行样本进行联邦机器学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 已发布区域:北京四、北京二

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • 最新动态

    续特征选择、模型训练的数据集。 公测 创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 oid oid 数据库对象id。 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接

    来自:帮助中心

    查看更多 →

  • 模型训练高可靠性

    模型训练高可靠 训练作业容错检查 训练日志失败分析 训练作业卡死检测 训练作业重调度 设置断点续训练 设置无条件自动重启 父主题: 使用ModelArts Standard训练模型

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了