AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习和强化学习 更多内容
  • 什么是Workflow

    Workflow基于对当前ModelArts已有能力的编排,基于DevOps原则实践,应用于AI开发过程中,提升了模型开发与落地效率,更快地进行模型实验开发,并更快地将模型部署到生产环境。 工作流的开发态运行态分别实现了不同的功能。 开发态-开发工作流 开发者结合实际业务的需求,通过Workflow提供的Python

    来自:帮助中心

    查看更多 →

  • IAM 身份中心

    CCE是否深度学习服务可以内网通信? CCE是否深度学习服务可以内网通信? CCE是否深度学习服务可以内网通信? CCE是否深度学习服务可以内网通信? CCE是否深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍 应用容器化改造流程 步骤1:对应用进行分析 步骤2:准备应用运行环境

    来自:帮助中心

    查看更多 →

  • SA与HSS服务的区别?

    机安全、容器安全网页防篡改,旨在解决混合云、多云数据中心基础架构中服务器工作负载的独特保护要求。 简而言之,SA是呈现全局安全态势的服务,HSS是提升主机容器安全性的服务服务功能区别 SA通过采集全网安全数据(包括HSS、WAF、AntiDDoS等安全服务检测数据),使用

    来自:帮助中心

    查看更多 →

  • 场景介绍

    Optimization):直接偏好优化方法,通过直接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):

    来自:帮助中心

    查看更多 →

  • 什么是对话机器人服务

    什么是对话机器服务 对话机器服务(Conversational Bot Service) 是一款基于人工智能技术,针对企业应用场景开发的云服务,主要提供智能问答机器人功能。智能问答机器人旨在帮助企业快速构建,发布管理基于知识库的智能问答机器人系统。 对话机器服务包含以下子服务:

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: AI

    来自:帮助中心

    查看更多 →

  • 如何在DLI中运行复杂PySpark程序?

    k的融合机器学习相关的大数据分析程序。传统上,通常是直接基于pip把Python库安装到执行机器上,对于 DLI 这样的Serverless化服务用户无需也感知不到底层的计算资源,那如何来保证用户可以更好的运行他的程序呢? DLI服务在其计算资源中已经内置了一些常用的机器学习的算法库(具体可以参考” 数据湖探索

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • Storm应用开发简介

    单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算分布式ETL等,易扩展、支持容错,可确保数据得到处理,易于构建和操控。 Storm有如下几个特点: 适用场景广泛 易扩展,可伸缩性高

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机深度神经网络对于特征表达的学习,同时学习高阶低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • AI智能生成

    AI智能生成 使用智能助手自动生成组合应用:智能助手通过NLP (Natural Language Processing) 机器学习,理解用户输入的集成业务需求,匹配系统支持的触发器、连接器和数据处理器,生成组合应用。可以对生成的组合应用进一步配置、编排、构建和部署上线。 父主题:

    来自:帮助中心

    查看更多 →

  • ModelArts

    如何查看ModelArts中正在收费的作业? 如何查看ModelArts消费详情? 更多 自动学习 自动学习生成的模型,存储在哪里?支持哪些其他操作? 在ModelArts中图像分类物体检测具体是什么? 自动学习训练后的模型是否可以下载? 自动学习项目中,如何进行增量训练? 更多 训练作业 ModelArts中的作业为什么一直处于等待中?

    来自:帮助中心

    查看更多 →

  • 产品优势

    面检测资产脆弱性。 轻量化部署,一键扫描 依托于华为乾坤安全云服务,将扫描引擎部署在云端,客户侧无需安装任务软件。 扫描配置简单,一键扫描,简单易用。 精准修复优先级推荐, 识别真实风险 基于华为威胁信息库机器学习智能评估技术,计算漏洞风险评分—漏洞优先级评级VPR。 漏洞评分越高,风险越高,客户需要优先修复。

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    训练相关概念说明 概念名 说明 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它

    来自:帮助中心

    查看更多 →

  • Storm应用开发简介

    单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算分布式ETL等,易扩展、支持容错,可确保数据得到处理,易于构建和操控。 Storm有如下几个特点: 适用场景广泛 易扩展,可伸缩性高

    来自:帮助中心

    查看更多 →

  • 营销宣传风格文案

    家用机器人还具备 语音识别 语音回应功能,让您能够与机器人进行流畅的对话交流。 164. 视觉交互:家用机器人配备了先进的摄像头视觉传感器,可以通过图像识别视觉感知与您进行交互。 165. 例如,机器人可以识别家庭成员的面孔、手势身体姿势,并做出个性化的反应和服务。 166

    来自:帮助中心

    查看更多 →

  • 什么是自然语言处理

    Understanding,简称LU)、机器翻译(Machine Translation,简称MT)功能。 入门使用 NLP以开放API的方式提供给用户,您可以参考《快速入门》学习并使用NLP服务。 使用方式 如果您是一个开发工程师,熟悉代码编写,想要直接调用NLP的API或SDK使用服务,您可以参考《API参考》或《SDK参考》获取详情。

    来自:帮助中心

    查看更多 →

  • 机器人回复图元

    添加流程变量界面 图2 流程编排示例 保存并发布流程。 选择“智能机器人”,将流程绑定机器人。 选择“智能机器人”,在对应机器人的最后一列单击“呼叫测试”,在弹出的测试对话窗口中单击“开始呼叫”,测试机器人。机器人自动回答流程编排中的变量值表示配置成功。 父主题: 图元

    来自:帮助中心

    查看更多 →

  • 智能问答机器人

    没有模型的问答基于标注数据训练了模型的区别 是否支持私有化部署 路数是什么?如何增加会话路数 是否支持提出一个问题得到多个回答 问答数据保留时间 如何修改机器人规格,不同版本机器人区别 如何删除机器人 智能问答机器人的回答规则是什么 如何查询机器人使用情况 如何使用问答语料导入模板 子账户导出数据受obs权限影响时怎么处理

    来自:帮助中心

    查看更多 →

  • Storm应用开发简介

    单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算分布式ETL等,易扩展、支持容错,可确保数据得到处理,易于构建和操控。 Storm有如下几个特点: 适用场景广泛 易扩展,可伸缩性高

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了