AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习标准化训练集和测试集 更多内容
  • 训练的数据集预处理说明

    ModelLink微调数据预处理参数说明 微调包含SFTLoRA微调。数据预处理脚本参数说明如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data) --tokenizer-type:t

    来自:帮助中心

    查看更多 →

  • 发布测试

    发布测试 当您配置好意图后,即可进行模型的训练训练并发布模型后,该技能才能在机器人的对话中生效。 创建训练模型 在“技能管理”页面,单击技能名称进入“配置意图”页面,然后在页面上方单击“发布测试”。 单击“训练模型”。 图1 训练模型 勾选需要训练发布的用户问法或者对话训练,设

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    n/ 微调数据预处理参数说明 微调包含SFTLoRA微调。数据预处理脚本参数说明如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:alpaca_gpt4_data) --tokenizer-type:t

    来自:帮助中心

    查看更多 →

  • 如何将某些图片划分到验证集或者训练集?

    输入“训练比例”,数值只能是0~1区间内的数。设置好“训练比例”后,“验证比例”自动填充。“训练比例”加“验证比例”等于1。 “训练比例”即用于训练模型的样本数据比例;“验证比例”即用于验证模型的样本数据比例。“训练验证比例”会影响训练模板的性能。 父主题: Standard数据管理

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    GeneralPretrainHandler:使用预训练的alpaca数据。 GeneralInstructionHandler:使用微调的alpaca数据。 MOSSMultiTurnHandler:使用微调的moss数据。 MBS 4 表示流水线并行中一个micro batch所处理的样本量。在流水线

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    / 微调数据预处理参数说明 微调包含SFTLoRA微调。数据预处理脚本参数说明如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data) --tokenizer-type:t

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    / 微调数据预处理参数说明 微调包含SFTLoRA微调。数据预处理脚本参数说明如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data) --tokenizer-type:t

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据预处理参数说明 微调包含SFTLoRA微调。数据预处理脚本参数说明如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:alpaca_gpt4_data)

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据预处理参数说明 微调包含SFTLoRA微调。数据预处理脚本参数说明如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:alpaca_gpt4_data)

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ta.sh 。 预训练数据预处理参数说明 预训练数据预处理脚本 scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:alpaca_gpt4_data)。

    来自:帮助中心

    查看更多 →

  • 预训练

    GeneralPretrainHandler:使用预训练的alpaca数据。 GeneralInstructionHandler:使用微调的alpaca数据。 MOSSMultiTurnHandler:使用微调的moss数据。 MBS 4 表示流水线并行中一个micro batch所处理的样本量。在流水

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练

    GeneralPretrainHandler:使用预训练的alpaca数据。 GeneralInstructionHandler:使用微调的alpaca数据。 MOSSMultiTurnHandler:使用微调的moss数据。 MBS 4 表示流水线并行中一个micro batch所处理的样本量。在流水线

    来自:帮助中心

    查看更多 →

  • 指令监督微调训练任务

    指令监督微调训练任务 Step1 上传训练权重文件和数据 如果在准备代码和数据阶段已经上传权重文件、自定义数据,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码权重文件到工作环境。 使用自定义数据集训练未上传自定义数据。具体参考上传自定义数据到指定目录章节并更新dataset_info

    来自:帮助中心

    查看更多 →

  • 数据管理概述

    TICS 的数据管理由“连接器管理”“数据管理”两部分来实现: 连接器是 可信智能计算 服务提供的一项访问参与方数据资源的功能。参与方填写连接信息来创建对应类型的连接器,并通过这些连接器访问到各类型资源的结构化信息。当前支持 MRS 服务(Hive)、本地数据、RDS数据、DWS数据、Oracle数据、My

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    n/ 微调数据预处理参数说明 微调包含SFTLoRA微调。数据预处理脚本参数说明如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:alpaca_gpt4_data) --tokenizer-type:t

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    / 微调数据预处理参数说明 微调包含SFTLoRA微调。数据预处理脚本参数说明如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data) --tokenizer-type:t

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据预处理参数说明 微调包含SFTLoRA微调。数据预处理脚本参数说明如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:alpaca_gpt4_data)

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    / 微调数据预处理参数说明 微调包含SFTLoRA微调。数据预处理脚本参数说明如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data) --tokenizer-type:t

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    / 微调数据预处理参数说明 微调包含SFTLoRA微调。数据预处理脚本参数说明如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data) --tokenizer-type:t

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    ModelLink微调数据预处理参数说明 微调包含SFTLoRA微调。数据预处理脚本参数说明如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:moss-003-sft-data) --tokenizer-type:t

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    Standard模型训练 ModelArts Standard模型训练提供容器化服务计算资源管理能力,负责建立管理机器学习训练工作负载所需的基础设施,减轻用户的负担,为用户提供灵活、稳定、易用极致性能的深度学习训练环境。通过ModelArts Standard模型训练,用户可以专注于开发、训练和微调模型。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了