华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习vgg 更多内容
  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。 取值范围

    来自:帮助中心

    查看更多 →

  • 图片/音频标注介绍

    标注、保存标注结果、标注结果发布数据集等功能。可准确、高效、安全地完成各类型数据的标注任务,为客户提供专业的数据标注服务能力,助力客户高效开展算法模型训练与机器学习,快速提高AI领域竞争力。 图片/音频标注数据标注支持选择上传本地数据文件进行标注。上传后的文件存储于OBS中,标注

    来自:帮助中心

    查看更多 →

  • 智能问答机器人简介

    智能问答机器人简介 问答机器人可提供智能对话引擎,通过对机器人知识的配置,可以让机器人回答不同的问题。配置后,您可以通过API接口的方式接入已有的对话应用,比如智能客服、通讯软件、公众号等,以实现智能对话的功能。 在使用智能问答机器人之前,需要您先购买智能问答机器人,目前提供的智

    来自:帮助中心

    查看更多 →

  • 智能场景简介

    针对对应的场景,由RES根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。 智能场景功能说明 表1 功能说明 功能 说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法,深度挖掘物品之间的联系,自动匹配精准内容。

    来自:帮助中心

    查看更多 →

  • 管理机器人测试用例

    管理机器人测试用例 前提条件 您已经参照配置一个预约挂号机器人(任务型对话机器人)完成流程和机器人的配置。 管理测试用例有什么用? 自动测试可以使运维人员使用自动测试文本来批量测试对话,来验证机器人的回复是否满足预期,减少验证语料是否正确的工作量。 操作步骤 选择“配置中心>机器

    来自:帮助中心

    查看更多 →

  • 添加问答型对话机器人

    添加问答型对话机器人 问答型对话机器人可根据用户的具体问题给出具体答案,回答的内容更基于知识而不是用户目的。 在添加问答型对话机器人时,您需要事先增加问答组,问答组与任务机器人中的领域效果类似,用于专门解答特定业务的问题,例如咨询产品资费问题。 选择“配置中心>机器人管理>语义理解服务> 知识管理

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 创建智能问答机器人

    问答机器人。 步骤1:购买机器人 步骤2:新建语料 步骤3:对话体验 步骤4:调用问答接口 步骤5:问答机器人运营 步骤1:购买机器人 在使用智能问答机器人之前,您需要登录CBS管理控制台购买问答机器人。购买完成后,您可以通过问答机器人列表,查看机器人信息。刚购买的问答机器人状态为创建中,创建成功后状态为可用。

    来自:帮助中心

    查看更多 →

  • 产品功能

    护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。

    来自:帮助中心

    查看更多 →

  • 什么是Workflow

    在介绍Workflow之前,先了解MLOps的概念。 MLOps(Machine Learning Operation)是“机器学习”(Machine Learning)和“DevOps”(Development and Operations)的组合实践。机器学习开发流程主要可以定义为四个步骤:项目设计、

    来自:帮助中心

    查看更多 →

  • Storm应用开发简介

    一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩展、支持容错,可确保数据得到处理,易于构建和操控。 Storm有如下几个特点: 适用场景广泛 易扩展,可伸缩性高

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 营销宣传风格文案

    更多色彩。 12. 此外,家用机器人还具备强大的学习和适应能力。 13. 它可以通过不断地学习和训练,更好地理解和适应您的需求,为您提供更为个性化的服务。 14. 这不仅使您享受到了科技的便利,也让家用机器人的使用变得更加人性化。 15. 家用机器人是您生活中的最佳助手,它为您带来了更为智能、便捷和舒适的生活体验。

    来自:帮助中心

    查看更多 →

  • DLI作业开发流程

    使用CES监控 DLI 服务 您可以通过云监控服务提供的管理控制台或API接口来检索 数据湖探索 服务产生的监控指标和告警信息。 例如监控DLI队列资源使用量和作业的运行情况。了解更多DLI支持的监控指标请参考使用CES监控DLI服务。 使用 CTS 审计DLI服务 通过 云审计 服务,您可以记录与D

    来自:帮助中心

    查看更多 →

  • 产品优势

    面检测资产脆弱性。 轻量化部署,一键扫描 依托于华为乾坤安全云服务,将扫描引擎部署在云端,客户侧无需安装任务软件。 扫描配置简单,一键扫描,简单易用。 精准修复优先级推荐, 识别真实风险 基于华为威胁信息库和机器学习智能评估技术,计算漏洞风险评分—漏洞优先级评级VPR。 漏洞评分越高,风险越高,客户需要优先修复。

    来自:帮助中心

    查看更多 →

  • 应用场景

    全链路性能追踪:Web服务、缓存、数据库全栈跟踪,性能瓶颈轻松掌握。 故障智能诊断 业务痛点 海量业务下,出现百种指标监控、KPI数据、调用跟踪数据等丰富但无关联的应用运维数据,如何通过应用、服务、实例、主机和事务等多视角分析关联指标和告警数据,自动完成故障根因分析;如何基于历史数据学习与运维经验库,对异常事务智能分析给出可能原因。

    来自:帮助中心

    查看更多 →

  • 使用Moodle搭建在线学习系统

    使用Moodle搭建在线学习系统 应用场景 Moodle是一个面向全球用户的开源在线教育系统,它被用于在线学习等场景。Moodle应用镜像基于Ubuntu 22.04操作系统,采用Docker部署,已预装Moodle应用以及其需要的运行环境。本节介绍如何安装部署Moodle应用。

    来自:帮助中心

    查看更多 →

  • 获取横向联邦学习作业详情

    "eval_dataset_name" : "host_f40_10w" } 状态码 状态码 描述 200 获取横向联邦学习作业详情成功 401 操作无权限 500 内部服务器错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 执行横向联邦学习作业

    "7b0df147d6464ef2877b22f6d964d274" } 状态码 状态码 描述 200 执行联邦学习作业成功 401 操作无权限 500 内部服务器错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 什么是对话机器人服务

    什么是对话机器服务 对话机器服务 (Conversational Bot Service) 是一款基于人工智能技术,针对企业应用场景开发的云服务,主要包括智能问答机器人功能。智能问答旨在帮助企业快速构建,发布和管理基于知识库的智能问答机器人系统。 对话机器服务,需要您先创建

    来自:帮助中心

    查看更多 →

  • 自动学习为什么训练失败?

    ;+=<>/ 如果OBS路径符合要求,请您按照服务具体情况执行3。 自动学习项目不同导致的失败原因可能不同。 图像识别训练失败请检查是否存在损坏图片,如有请进行替换或删除。 物体检测训练失败请检查数据集标注的方式是否正确,目前自动学习仅支持矩形标注。 预测分析训练失败请检查标签列

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了