AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    表示学习机器学习 更多内容
  • 创建工程

    创建工程 创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 在联邦学习部署服务创建联邦学习实例时,将“基础模型配置”选择为“从NAIE平台中导入”,自动匹配模型训练服务的联邦学习工程及其训练任务和模型包。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • 最新动态

    创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级

    来自:帮助中心

    查看更多 →

  • 天筹求解器服务简介

    天筹求解器服务简介 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 父主题: 服务介绍

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 oid oid 数据库对象id。 template_name name 机器学习模型的模板名,决定训练和预测调用的函数

    来自:帮助中心

    查看更多 →

  • 方案概述

    elArts在线服务获取预测结果,并存储至OBS桶。 在统一身份认证服务 IAM上创建一个委托,用于授权FunctionGraph访问ModelArts在线服务和OBS桶。 方案优势 快速构建机器学习模型 AI开发平台 ModelArts可以快速创建和训练机器学习模型,无需任何编码。使模型开发和训练过程更加便捷和高效。

    来自:帮助中心

    查看更多 →

  • 方案概述

    elArts在线服务获取预测结果,并存储至OBS桶。 在统一身份认证服务 IAM上创建一个委托,用于授权FunctionGraph访问ModelArts在线服务和OBS桶。 方案优势 快速构建机器学习模型 AI开发平台ModelArts可以快速创建和训练机器学习模型,无需任何编码。使模型开发和训练过程更加便捷和高效。

    来自:帮助中心

    查看更多 →

  • 什么是OptVerse

    什么是OptVerse 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 使用要求 OptVerse以开放API(Application

    来自:帮助中心

    查看更多 →

  • 安全云脑的数据来源是什么?

    安全云脑基于云上威胁数据和华为云服务采集的威胁数据,通过大数据挖掘和机器学习,分析并呈现威胁态势,并提供防护建议。 一方面采集全网流量数据,以及安全防护设备日志等信息,通过大数据智能AI分析采集的信息,呈现资产的安全状况,并生成相应的威胁告警。 另一方面汇聚主机安全服务(Host Security

    来自:帮助中心

    查看更多 →

  • ModelArts

    ModelArts-成长地图 | 华为云 ModelArts ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。

    来自:帮助中心

    查看更多 →

  • ALM-157163596 学习到动态mac地址个数达到上限

    BD ID。 MacLimitMaxMac 配置的可以学习到MAC的最大数。 对系统的影响 当超过MAC地址表项限制时,设备不再学习新的MAC表项。 可能原因 学习的动态MAC数目超过了限制MAC表规则中规定的最大MAC学习的数目。 处理步骤 正常提示信息,无需处理。 参考信息 无

    来自:帮助中心

    查看更多 →

  • ALM-157163635 学习到动态MAC地址个数达到上限

    隧道对端IP地址。 MacLimitMaxMac 配置的可以学习到MAC的最大数。 对系统的影响 当超过MAC地址表项限制时,设备不再学习新的MAC表项。 可能原因 学习的动态MAC数目超过了限制MAC表规则中规定的最大MAC学习的数目。 处理步骤 1. 删除不需要的MAC,或者执行命令peer

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    处理和对话机器服务 ModelArts平台开发实验 介绍自动学习、数据管理、深度学习预置算法、深度学习自定义基础算法和进阶算法 本培训为线下面授形式,培训标准时长为9天,每班人数不超过20人。 验收标准 按照培训服务申请标准进行验收,客户以官网单击确认《培训专业服务签到表》作为验收合格依据。

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • ALM-257564679 学习到动态mac地址个数达到上限

    VLAN ID。 MacLimitMaxMac 配置的可以学习到MAC的最大数。 对系统的影响 当超过MAC地址表项限制时,设备不再学习新的MAC表项。 可能原因 学习的动态MAC数目超过了限制MAC表规则中规定的最大MAC学习的数目。 处理步骤 删除不需要的MAC,或者在VLAN视图下执行命令mac-address

    来自:帮助中心

    查看更多 →

  • ALM-257564680 学习到动态mac地址个数达到上限

    L2IfPortName 接口名字。 MacLimitMaxMac 配置的可以学习到MAC的最大数。 对系统的影响 当超过MAC地址表项限制时,设备不再学习新的MAC表项。 可能原因 学习的动态MAC数目超过了限制MAC表规则中规定的最大MAC学习的数目。 处理步骤 删除不需要的MAC,或者在VLAN视图下执行命令mac-address

    来自:帮助中心

    查看更多 →

  • 态势感知的数据来源是什么?

    态势感知的数据来源是什么? 态势感知基于云上威胁数据和华为云服务采集的威胁数据,通过大数据挖掘和机器学习,分析并呈现威胁态势,并提供防护建议。 一方面采集全网流量数据,以及安全防护设备日志等信息,通过大数据智能AI分析采集的信息,呈现资产的安全状况,并生成相应的威胁告警。 另一方面汇聚企业主机安全(Host

    来自:帮助中心

    查看更多 →

  • 产品功能

    护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。

    来自:帮助中心

    查看更多 →

  • 修订记录

    新增“异步推理”章节。 更新“发布推理服务”章节。 2020-11-30 优化创建联邦学习工程章节,加入在模型训练服务创建联邦学习工程和联邦学习服务的关系描述。 2020-09-30 数据集详情界面优化,更新新建数据集和导入数据。 模型训练章节,针对AutoML自动机器学习,输出场景化资料。 模型管理界面优化,更新模型管理。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了