云搜索服务 CSS 

 

云搜索服务是一个基于Elasticsearch且完全托管的在线分布式搜索服务,为用户提供结构化、非结构化文本的多条件检索、统计、报表。完全兼容开源Elasticsearch软件原生接口。它可以帮助网站和APP搭建搜索框,提升用户寻找资料和视频的体验;还可以搭建日志分析平台,在运维上进行业务日志分析和监控,在运营上进行流量分析等等。

 
 

    机器学习松散向量表示 更多内容
  • 创建数据预处理作业

    ender等字段均存在一定程度的缺失。为了不让机器理解形成偏差、以达到机器学习的使用标准,需要基于对数据的理解,对数据进行特征预处理。例如: job字段是多类别的变量,其值0、1、2实际没有大小之分,一般会将该特征转换成向量,如值为0用向量[1, 0, 0]表示,1用向量[0,1

    来自:帮助中心

    查看更多 →

  • 句向量

    否 计算句向量时使用的模型名,目前只支持general,默认为general。 响应消息 响应参数如表3所示。 表3 响应参数 参数名 参数类型 说明 vectors Array of floats 句向量结果列表,按输入句子顺序返回句向量,句向量维度默认为100。 error_code

    来自:帮助中心

    查看更多 →

  • 创建向量索引

    native.cache.circuit_breaker.enabled 是否开启堆外内存熔断。 默认值:true。 native.cache.circuit_breaker.cpu.limit 向量索引堆外内存使用上限。 假设使用128GB内存的机器且堆内存大小为31GB,默认堆外内存使用上限为(128

    来自:帮助中心

    查看更多 →

  • 创建向量索引

    native.cache.circuit_breaker.enabled 是否开启堆外内存熔断。 默认值:true。 native.cache.circuit_breaker.cpu.limit 向量索引堆外内存使用上限。 假设使用128GB内存的机器且堆内存大小为31GB,默认堆外内存使用上限为(128

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    解机每个特征对其他域的隐向量都一致,而域感知因子分解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达

    来自:帮助中心

    查看更多 →

  • 向量检索特性介绍

    10000000 ≈ 7.5”。 同时考虑到堆内存的开销,单台“8U 16G”规格的机器可以满足该场景的需求。如果实际场景还有实时写入或更新的需求,则需要考虑申请更大的内存规格。 父主题: 配置OpenSearch集群向量检索

    来自:帮助中心

    查看更多 →

  • 管理向量索引缓存

    管理向量索引缓存 CSS 向量检索引擎使用C++实现,使用的是堆外内存,该插件提供了接口对向量索引的缓存进行管理。 查看缓存统计信息 GET /_vector/stats 在向量插件实现中,向量索引与Lucene其他类型索引一样,每一个segment构造并存储一份索引文件,在查询

    来自:帮助中心

    查看更多 →

  • 文本向量化

    状态码: 500 服务器内部错误或三方服务器内部错误。 { "error" : { "message" : "Internal server error, please try again later!", "type" : "internal_error",

    来自:帮助中心

    查看更多 →

  • 向量检索特性介绍

    10000000 ≈ 7.5”。 同时考虑到堆内存的开销,单台“8U 16G”规格的机器可以满足该场景的需求。如果实际场景还有实时写入或更新的需求,则需要考虑申请更大的内存规格。 父主题: 配置Elasticsearch集群向量检索

    来自:帮助中心

    查看更多 →

  • 管理向量索引缓存

    管理向量索引缓存 CS S的向量检索引擎使用C++实现,使用的是堆外内存,该插件提供了接口对向量索引的缓存进行管理。 查看缓存统计信息 GET /_vector/stats 在向量插件实现中,向量索引与Lucene其他类型索引一样,每一个segment构造并存储一份索引文件,在查询

    来自:帮助中心

    查看更多 →

  • AI原生应用引擎基本概念

    处理、机器翻译、 语音识别 、智能问答等领域。 向量化模型 向量化模型是将文本数据转换为数值向量的过程。常用于将文本转换为机器可以处理的形式,以便进行各种任务,如文本分类、情感分析、机器翻译等。 多模态模型 多模态模型是指能够处理多种类型数据(如文本、图像、音频等)的机器学习模型。这

    来自:帮助中心

    查看更多 →

  • 示例:向量场景

    connect(dbname="database", user=user, password=password, host="localhost", port=port, # sslmode="verify-ca", sslcert="client.crt",sslkey="client

    来自:帮助中心

    查看更多 →

  • 向量数据类型

    boolvector不支持NULL、Nan、Inf作为元素,当向量中含有NULL值,数据库会报错。 boolvector不能为NULL,当插入、更新或转换NULL值作为向量数据时,数据库会报错。 向量类型的使用 向量类型的使用示例如下: -- 创建含向量类型的表,同时设定数据维度。建表时向量类型必须要指定维度。 gaussdb=#

    来自:帮助中心

    查看更多 →

  • 向量距离计算接口

    cosine_distance('[1,2,3]', '[5,-1,3.5]'); vector_spherical_distance 功能说明:计算两个归一化向量的球面距离(余弦夹角的弧度制表示) 入参1的类型:floatvector 入参2的类型:floatvector 出参类型:float8

    来自:帮助中心

    查看更多 →

  • 向量操作函数接口

    向量操作函数接口 向量操作函数实现的功能包括:向量大小比较、向量加法、向量减法、向量按位乘法等。 inner_product 功能说明:计算两个向量的内积。 入参1的类型:floatvector 入参2的类型:floatvector 出参类型:float8 代码示例: gaussdb=#

    来自:帮助中心

    查看更多 →

  • 排序策略

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    账号下的所有 CTS 追踪器未追踪指定的OBS桶,视为“不合规” mrs-cluster-kerberos-enabled MRS 集群开启kerberos认证 mrs MRS集群未开启kerberos认证,视为“不合规” mrs-cluster-no-public-ip MRS集群未绑定弹性公网IP mrs

    来自:帮助中心

    查看更多 →

  • 使用向量索引搜索数据

    使用向量索引搜索数据 使用向量索引搜索数据支持多种方式。 标准查询 复合查询 ScriptScore查询 重打分查询 Painless语法扩展查询 标准查询 针对创建了向量索引的向量字段,提供了标准向量查询语法。下述查询命令将会返回所有数据中与查询向量最近的size(topk)条数据。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • Hive是否支持向量化查询

    Hive是否支持向量化查询 问题 当设置向量化参数hive.vectorized.execution.enabled=true时,为什么执行hive on Tez/Mapreduce/Spark时会偶现一些空指针或类型转化异常? 回答 当前Hive不支持向量化执行,向量化执行有很多社

    来自:帮助中心

    查看更多 →

  • 向量函数和操作符

    向量函数和操作符 floatvector支持向量类型和数组类型之间的数据转换,同时支持特定格式的字符串转换成向量类型。 array<->floatvector:数据类型转换中向量数据类型可以和相对应的数组类型进行自由转换;floatvector向量的成员数据类型为浮点型。 string

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了