win8 tensorflow cpu 更多内容
  • 增强型CPU管理策略

    时,会自动分配到其他利用率较低的CPU上,进而保障了应用的响应能力。 开启增强型CPU管理策略时,应用性能优于不开启CPU管理策略(none),但弱于静态CPU管理策略(static)。 应用分配的优先使用的CPU并不会被独占,仍处于共享的CPU池中。因此在该Pod处于业务波谷时

    来自:帮助中心

    查看更多 →

  • AI CPU算子替换样例

    AI CPU算子替换样例 部分算子因为数据输入类型问题或者算子实现问题,导致会在昇腾芯片的AI CPU上执行,没有充分利用AI CORE的资源,从而导致计算性能较差,影响训练速度。部分场景下,可以通过修改Python代码来减少这类AI CPU算子,从而提升训练性能。 当前对AICPU算子识别到的调优方式主要包含两种:

    来自:帮助中心

    查看更多 →

  • AI CPU算子替换样例

    AI CPU算子替换样例 部分算子因为数据输入类型问题或者算子实现问题,导致会在昇腾芯片的AI CPU上执行,没有充分利用AI CORE的资源,从而导致计算性能较差,影响训练速度。部分场景下,可以通过修改Python代码来减少这类AI CPU算子,从而提升训练性能。 当前对AICPU算子识别到的调优方式主要包含两种:

    来自:帮助中心

    查看更多 →

  • TensorFlow在OBS写入TensorBoard到达5GB时停止

    signature check failed. This could be because of a time skew. Attempting to adjust the signer 原因分析 OBS限制单次上传文件大小为5GB,TensorFlow保存summary可能是本地缓

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU)

    keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data(args.data_url) x_train, x_test = x_train / 255.0, x_test / 255.0

    来自:帮助中心

    查看更多 →

  • 以PyTorch框架创建训练作业(新版训练)

    "image_info": { "cpu_image_url": "aip/pytorch_1_8:train", "gpu_image_url": "aip/pytorch_1_8:train", "image_version":

    来自:帮助中心

    查看更多 →

  • 训练作业的自定义镜像制作流程

    iver目录。 X86 CPU架构和ARM CPU架构的 自定义镜像 分别只能运行于对应CPU架构的规格中。 执行如下命令,查看自定义镜像的CPU架构。 docker inspect {自定义镜像地址} | grep Architecture ARM CPU架构的自定义镜像,上述命令回显如下。

    来自:帮助中心

    查看更多 →

  • 是否支持CPU架构的变更?

    是否支持CPU架构的变更? 不支持变更CPU架构。 如需改变CPU架构,可通过“数据迁移+交换IP”方式的方式,创建新的CPU架构的实例,并进行数据迁移,实现CPU架构的变更。具体操作请参考使用迁移任务在线迁移Redis实例。 父主题: Redis使用

    来自:帮助中心

    查看更多 →

  • CPU积分计算方法

    每分钟累积积分计算公式如下: 每分钟累计的CPU积分 = 1个CPU积分 x (基准CPU计算性能 - 实际CPU计算性能) 以t6.large.1为例,基准CPU计算性能为40%,当 云服务器 实际计算性能为10%时,1分钟可以累积0.3个CPU积分。 关机对CPU积分的影响 CPU积分变化因计费模式和网络类型而异。

    来自:帮助中心

    查看更多 →

  • GS_SESSION_CPU_STATISTICS

    语句执行的开始时间。 min_cpu_time bigint 语句在所有DN上的最小CPU时间,单位为ms。 max_cpu_time bigint 语句在所有DN上的最大CPU时间,单位为ms。 total_cpu_time bigint 语句在所有DN上的CPU总时间,单位为ms。 query

    来自:帮助中心

    查看更多 →

  • 开发模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 开发算法模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 训练专属预置镜像列表

    7-ubuntu_1804-x86_64 不同区域支持的AI引擎有差异,请以实际环境为准。 训练基础镜像详情(PyTorch) 介绍预置的PyTorch镜像详情。 引擎版本:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本:pytorch_1.8.0-cuda_10

    来自:帮助中心

    查看更多 →

  • 查询指定namespace下的所有TFJob

    whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is

    来自:帮助中心

    查看更多 →

  • Tensorflow多节点作业下载数据到/cache显示No space left

    Tensorflow多节点作业下载数据到/cache显示No space left 问题现象 创建训练作业,Tensorflow多节点作业下载数据到/cache显示:“No space left”。 原因分析 TensorFlow多节点任务会启动parameter server(

    来自:帮助中心

    查看更多 →

  • TensorFlow-1.8作业连接OBS时反复出现提示错误

    TensorFlow-1.8作业连接OBS时反复出现提示错误 问题现象 基于TensorFlow-1.8启动训练作业,并在代码中使用“tf.gfile”模块连接OBS,启动训练作业后会频繁打印如下日志信息: Connection has been released. Continuing

    来自:帮助中心

    查看更多 →

  • 华为HiLens上可以运行哪些TensorFlow和Caffe的模型?

    华为HiLens上可以运行哪些TensorFlowCaffe的模型? 准确地说,华为HiLens上只能运行“om”模型,华为HiLens管理控制台的“模型导入(转换)”功能支持将部分TensorFlow/Caffe模型转换成“om”模型。 当前可支持的TensorFlow/Caffe算子范围请参

    来自:帮助中心

    查看更多 →

  • 如何在Notebook中安装外部库

    source /home/ma-user/anaconda3/bin/activate TensorFlow-1.8 如果使用其他引擎,请将命令中“TensorFlow-1.8”替换为其他引擎的名称及其版本号。 图1 激活环境 在代码输入栏输入以下命令安装Shapely。 pip

    来自:帮助中心

    查看更多 →

  • 删除namespace下的所有TFJob

    whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is

    来自:帮助中心

    查看更多 →

  • 变更实例的CPU和内存规格

    变更实例的CPU和内存规格 操作场景 当用户购买的实例的CPU和内存规格无法满足业务需要时,可以在控制台进行CPU和内存规格变更。 使用须知 用户既可以扩大规格,也可以降低规格。 节点规格变更采用滚动方式,单个节点耗时约5-10分钟,总时长与节点数量有关。 正在进行变更的节点,其

    来自:帮助中心

    查看更多 →

  • 变更实例的CPU和内存规格

    变更实例的CPU和内存规格 当您购买的实例的CPU和内存规格无法满足业务需要时,可以在控制台进行CPU和内存规格变更。 使用须知 用户既可以扩大规格,也可以降低规格。 节点规格变更采用滚动方式,单个节点耗时约5-10分钟,总时长与节点数量有关。 正在进行变更的节点,其计算任务由其

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了