微服务引擎 CSE 

 

微服务引擎(Cloud Service Engine)提供服务注册、服务治理、配置管理等全场景能力;帮助用户实现微服务应用的快速开发和高可用运维。支持多语言、多运行时;支持双栈模式,统一接入和管理Spring Cloud、Apache ServiceComb(JavaChassis/GoChassis)、Dubbo侵入式框架和Istio非侵入式服务网格。

 
 

    tensorflow 分布式cpu 更多内容
  • Notebook专属预置镜像列表

    开发环境预置镜像分为X86和ARM两类: 表1 X86预置镜像列表 引擎类型 镜像名称 PyTorch pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 pytorch1.10-cuda10.2-cudnn7-ubuntu18.04 pytorch1.4-cuda10.1-cudnn7-ubuntu18

    来自:帮助中心

    查看更多 →

  • 以PyTorch框架创建训练作业(新版训练)

    "image_info": { "cpu_image_url": "aip/pytorch_1_8:train", "gpu_image_url": "aip/pytorch_1_8:train", "image_version":

    来自:帮助中心

    查看更多 →

  • 如何修改CPU的阈值?

    如何修改CPU的阈值? SAP应用弹性伸缩安装后,默认CPU的阈值为85%,当CPU的使用率超过85%,自动扩展实例,根据实际业务可修改CPU的阈值,保障系统稳定运行。 操作步骤 登录公有云管理控制台。 在公有云管理控制台首页上,选择“服务列表 > 管理与部署 > 云监控”。 在左侧的导航栏,单击“告警

    来自:帮助中心

    查看更多 →

  • 查询模型runtime

    objects 引擎运行环境。 表5 EngineAndRuntimesResponse 参数 参数类型 描述 ai_engine String AI引擎类型,目前共有以下几种类型: TensorFlow PyTorch MindSpore XGBoost Scikit_Learn Spark_MLlib

    来自:帮助中心

    查看更多 →

  • 查询指定namespace下的所有TFJob

    whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is

    来自:帮助中心

    查看更多 →

  • 增强型CPU管理策略

    时,会自动分配到其他利用率较低的CPU上,进而保障了应用的响应能力。 开启增强型CPU管理策略时,应用性能优于不开启CPU管理策略(none),但弱于静态CPU管理策略(static)。 应用分配的优先使用的CPU并不会被独占,仍处于共享的CPU池中。因此在该Pod处于业务波谷时

    来自:帮助中心

    查看更多 →

  • 使用自定义镜像增强作业运行环境

    com/dli-public/spark_notebook-aarch64:3.3.1-2.3.7.1720240419835647952528832.202404250955 创建 自定义镜像 tensorflow为例,说明如何将tensorflow打包进镜像,生成安装了tensorflow的自定义

    来自:帮助中心

    查看更多 →

  • 分布式消息(Kafka)

    分布式消息(Kafka) 分布式消息(Kafka)连接器包含“Topic列表”、“发送数据”、“指定分区发送”三个执行动作和“消费消息”一个触发事件。 连接参数 创建分布式(Kafka)连接时连接参数说明如表1所示。如果需要连接的Kafka配置了IP地址白名单限制,则需要放通 集成工作台 公网出口访问地址“124

    来自:帮助中心

    查看更多 →

  • 分布式模型训练

    分布式模型训练 分布式训练功能介绍 创建单机多卡的分布式训练(DataParallel) 创建多机多卡的分布式训练(DistributedDataParallel) 示例:创建DDP分布式训练(PyTorch+GPU) 示例:创建DDP分布式训练(PyTorch+NPU) 父主题:

    来自:帮助中心

    查看更多 →

  • 分布式事务

    Server在开启分布式事务的时候已经启动MSDTC,其他 服务器 请参考设置 远程服务器 MSDTC(分布式事务处理协调器)进行启动。 更多介绍请参见Microsoft SQL Server官网MS DTC 分布式事务介绍。 使用限制 新实例默认开启分布式事务。 只读实例不支持分布式事务。 分布式事务功能一旦开启,将不允许关闭。

    来自:帮助中心

    查看更多 →

  • 删除namespace下的所有TFJob

    whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    Share等特性的支持,进一步提升kubeflow批量训练和推理的效率。 实现典型分布式AI训练任务 下面将展示如何基于Kubeflow和Volcano,并使用MNIST数据集轻松的完成数字图像分类模型的分布式训练。 登录CCE控制台,单击集群名称进入一个集群。 在CCE集群上部署Volcano环境。

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU)

    keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data(args.data_url) x_train, x_test = x_train / 255.0, x_test / 255.0

    来自:帮助中心

    查看更多 →

  • 是否支持CPU架构的变更?

    是否支持CPU架构的变更? 不支持变更CPU架构。 如需改变CPU架构,可通过“数据迁移+交换IP”方式的方式,创建新的CPU架构的实例,并进行数据迁移,实现CPU架构的变更。具体操作请参考使用迁移任务在线迁移Redis实例。 父主题: Redis使用

    来自:帮助中心

    查看更多 →

  • CPU积分计算方法

    每分钟累积积分计算公式如下: 每分钟累计的CPU积分 = 1个CPU积分 x (基准CPU计算性能 - 实际CPU计算性能) 以t6.large.1为例,基准CPU计算性能为40%,当 云服务器 实际计算性能为10%时,1分钟可以累积0.3个CPU积分。 关机对CPU积分的影响 CPU积分变化因计费模式和网络类型而异。

    来自:帮助中心

    查看更多 →

  • GS_SESSION_CPU_STATISTICS

    语句执行的开始时间。 min_cpu_time bigint 语句在所有DN上的最小CPU时间,单位为ms。 max_cpu_time bigint 语句在所有DN上的最大CPU时间,单位为ms。 total_cpu_time bigint 语句在所有DN上的CPU总时间,单位为ms。 query

    来自:帮助中心

    查看更多 →

  • 模型训练

    描述 训练任务的描述信息。 任务运行环境 AI引擎 AI引擎AI引擎的Python版本。 创建tensorboard任务 创建Tensorboard,详情请参见创建Tensorboard。 自定义引擎 通过引擎的镜像地址自定义增加引擎。 主入口 训练任务的入口文件及入口函数。 计算节点规格

    来自:帮助中心

    查看更多 →

  • 开发模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 分布式身份(公测)

    分布式身份(公测) 概述 分布式身份(DID)管理 可验证凭证(VC)管理 父主题: 区块链 中间件接口

    来自:帮助中心

    查看更多 →

  • 开发算法模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 模型训练

    描述 训练任务的描述信息。 任务运行环境 AI引擎 AI引擎AI引擎的Python版本。 创建tensorboard任务 创建Tensorboard,详情请参见创建Tensorboard。 自定义引擎 通过引擎的镜像地址自定义增加引擎。 主入口 训练任务的入口文件及入口函数。 计算节点规格

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了