tensorflow vgg16 预训练 更多内容
  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • OBS操作相关故障

    OBS操作相关故障 读取文件报错,如何正确读取文件 TensorFlow-1.8作业连接OBS时反复出现提示错误 TensorFlow在OBS写入TensorBoard到达5GB时停止 保存模型时出现Unable to connect to endpoint错误 OBS复制过程中提示“BrokenPipeError:

    来自:帮助中心

    查看更多 →

  • 模板管理

    。如果推理服务不使用Tensorflow引擎,实现起来效果不理想。 仅支持提供一个推理服务调用接口,无法满足某些Case的需求,比如:KPI异常检测。 模板优势 使用云端推理框架的“模板管理”具备如下优势: 相对于仅能使用固定类型的模型类型TensorFlow,模板部署模型包的方

    来自:帮助中心

    查看更多 →

  • 在CCE集群中部署使用Tensorflow

    cce-obs-tensorflow persistentVolumeClaim: claimName: cce-obs-tensorflow containers: - name: container-0

    来自:帮助中心

    查看更多 →

  • 训练作业的日志出现detect failed(昇腾预检失败)

    用户的 自定义镜像 中无ascend_check工具,导致启动检失败。 用户的自定义镜像中的ascend相关工具不可用,导致检失败。 处理方法 通过给训练作业加环境变量“MA_DETECT_TRAIN_INJECT_CODE”并将对应的值设置成0,就可以将检功能关闭。环境变量说明参考查看训练容器环境变量。 父主题:

    来自:帮助中心

    查看更多 →

  • 保存模型时出现Unable to connect to endpoint错误

    对于OBS连接不稳定的现象,通过增加代码来解决。您可以在代码最前面增加如下代码,让TensorFlow对ckpt和summary的读取和写入可以通过本地缓存的方式中转解决: import moxing.tensorflow as mox mox.cache() 父主题: OBS操作相关故障

    来自:帮助中心

    查看更多 →

  • 创建自动模型优化的训练作业

    准备工作 创建算法 创建训练作业 查看超参搜索作业详情 准备工作 数据已完成准备:已在ModelArts中创建可用的数据集,或者您已将用于训练的数据集上传至OBS目录。 请准备好训练脚本,并上传至OBS目录。训练脚本开发指导参见开发用于预置框架训练的代码。 在训练代码中,用户需打印搜索指标参数。

    来自:帮助中心

    查看更多 →

  • 如何在模型训练时,设置日志级别?

    如何在模型训练时,设置日志级别? 在TensorFlow的log日志等级如下: - 0:显示所有日志(默认等级) - 1:显示info、warning和error日志 - 2:显示warning和error信息 - 3:显示error日志信息 以设置日志级别为“3”为例,操作方法如下:

    来自:帮助中心

    查看更多 →

  • 业务代码问题

    'unidecode'” 分布式Tensorflow无法使用“tf.variable” MXNet创建kvstore时程序被阻塞,无报错 日志出现ECC错误,导致训练作业失败 超过最大递归深度导致训练作业失败 使用预置算法训练时,训练失败,报“bndbox”错误 训练作业进程异常退出 训练作业进程被kill

    来自:帮助中心

    查看更多 →

  • LLaVA模型基于DevServer适配PyTorch NPU预训练指导(6.3.906)

    LLaVA模型基于DevServer适配PyTorch NPU训练指导(6.3.906) LLaVA是一种新颖的端到端训练的大型多模态模型,它结合了视觉编码器和Vicuna,用于通用的视觉和 语言理解 ,实现了令人印象深刻的聊天能力,在科学问答(Science QA)上达到了新的高度。

    来自:帮助中心

    查看更多 →

  • 硬盘限制故障

    复制数据至容器中空间不足 Tensorflow多节点作业下载数据到/cache显示No space left 日志文件的大小达到限制 日志提示"write line error" 日志提示“No space left on device” OOM导致训练作业失败 常见的磁盘空间不足的问题和解决办法

    来自:帮助中心

    查看更多 →

  • 参数预加载

    参数加载 参数加载支持输入参数时请求云服务api获取加载选项,当前支持以下六种api接口: 表1 支持的api接口说明 属性 描述 hwc:ecs:flavors E CS 的Flavor hwc:vpc:myVpcs VPC列表 hwc:vpc:mySubnets Subnet子网列表

    来自:帮助中心

    查看更多 →

  • 使用模型

    IDE Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • 昇腾能力应用地图

    qwen2-72b 训练、SFT全参微调、LoRA微调 ModelLink LlamaFactory Yi yi-6b yi-34b 训练、SFT全参微调、LoRA微调 ModelLink LlamaFactory ChatGLMv3 glm3-6b 训练、SFT全参微调、LoRA微调

    来自:帮助中心

    查看更多 →

  • Msprobe API预检

    Msprobe API检 Msprobe是MindStudio Training Tools工具链下精度调试部分的工具包,主要包括精度检、溢出检测和精度比对等功能,目前适配PyTorch和MindSpore框架。这些子工具侧重不同的训练场景,可以定位模型训练中的精度问题。 精度检工具旨在

    来自:帮助中心

    查看更多 →

  • 训练

    训练 上传数据至OBS并预热到SFS Turbo中 创建训练任务 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型”,并配置训练参数,开始训练模型。 训练模型 当前服务提供预置训练模型“高精版”、“均衡版”、“基础版”,在“训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”、“训练轮次”和“语种”。 “学习率”用来控制模型的学习速度,范围为(0

    来自:帮助中心

    查看更多 →

  • 训练

    训练 上传数据至OBS并预热到SFS Turbo中 创建训练任务 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • Cann软件与Ascend驱动版本不匹配

    Cann软件与Ascend驱动版本不匹配 问题现象 训练失败并提示“Cann软件与Ascend驱动版本不匹配”。 原因分析 当昇腾规格的训练作业在ModelArts训练平台上运行时,会自动对Cann软件与Ascend驱动的版本匹配情况进行检查。如果平台发现版本不匹配,则会立即训练失败,避免后续无意义的运行时长。

    来自:帮助中心

    查看更多 →

  • 资源预校验

    资源校验 功能介绍 资源校验。 调用方法 请参见如何调用API。 URI POST /v3/{project_id}/resource-check 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 租户在某一Region下的project

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了