数据湖探索 DLI

数据湖探索(Data Lake Insight,简称DLI)是完全兼容Apache Spark和Apache Flink生态, 实现批流一体的Serverless大数据计算分析服务。DLI支持多模引擎,企业仅需使用SQL或程序就可轻松完成异构数据源的批处理、流处理、内存计算、机器学习等,挖掘和探索数据价值

 
进入控制台立即购买帮助文档DLI开发者社区1对1咨询                
               

           

    spark 机器学习 样本数量 更多内容
  • 查询产品内设备数量

    44650-cnnorth7a-P-romalink-service01" } 状态码: 500 Internal Server Error { "error_code" : "ROMA.00110002", "error_msg" : "The instance does

    来自:帮助中心

    查看更多 →

  • 查询资源实例数量

    查询资源实例数量 功能介绍 根据标签查询资源实例数量。 调用方法 请参见如何调用API。 URI POST /v5/{project_id}/{resource_type}/resource-instances/count 表1 参数说明 名称 类型 是否必选 说明 project_id

    来自:帮助中心

    查看更多 →

  • 查询资源实例数量

    查询资源实例数量 功能介绍 根据标签查询资源实例数量。 URI POST /v3/sfs/tms/{project_id}/file-systems/resource-instances/count 参数说明 参数 是否必选 参数类型 描述 project_id 是 String

    来自:帮助中心

    查看更多 →

  • 查询资源实例数量

    查询资源实例数量 功能介绍 查询资源实例数量。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST https://localhost.com/v1/{proj

    来自:帮助中心

    查看更多 →

  • 查询资源实例数量

    查询资源实例数量 功能介绍 使用标签过滤实例,标签管理服务需要提供按标签过滤各服务实例并汇总显示在列表中,需要各服务提供查询能力。注意:tags, tags_any, not_tags, not_tags_any等字段支持的tag的数量。 >- 说明:该接口仅支持Config的资

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    decay)的机制,可以有效地防止过拟合(overfitting)的问题。 学习率衰减比率 学习率衰减后的比率,用于控制训练过程中学习率的下降幅度。经过衰减后,学习率的最低值由初始学习率和衰减比率决定。其计算公式为:最低学习率 = 初始学习率 * 学习率衰减比率。也就是说,学习率在每次衰减后不会低于这个计算出来的最低值。

    来自:帮助中心

    查看更多 →

  • 查询样本量或者时域分析任务状态

    查询样本量或者时域分析任务状态 功能介绍 根据数据集ID查询数据集的样本量或时域分析任务状态。 URI URI格式 GET /softcomai/datalake/v1.0/datasets/metadata/status/{datasetId} 参数说明 参数名 是否必选 参数类型

    来自:帮助中心

    查看更多 →

  • 乳腺癌数据集作业结果

    乳腺癌数据集作业结果 本节实验包含了如下三个部分:(1)训练轮数对联邦学习模型分类性能的影响;(2)迭代次数对联邦学习模型分类性能的影响;(3)参与方数据量不同时,本地独立训练对比横向联邦的模型性能。 不同训练参数对模型准确率、训练时长的影响 训练轮数对模型准确率的影响(迭代次数固定为20)

    来自:帮助中心

    查看更多 →

  • 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同

    了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。 父主题: 大模型微调训练类问题

    来自:帮助中心

    查看更多 →

  • Spark输入

    Spark输入 概述 “Spark输入”算子,将SparkSQL表的指定列转换成同等数量的输入字段。 输入与输出 输入:SparkSQL表列 输出:字段 参数说明 表1 算子参数说明 参数 含义 类型 是否必填 默认值 Spark数据库 SparkSQL的数据库名称。 String

    来自:帮助中心

    查看更多 →

  • Spark输出

    Spark输出 概述 “Spark输出”算子,用于配置已生成的字段输出到SparkSQL表的列。 输入与输出 输入:需要输出的字段 输出:SparkSQL表 参数说明 表1 算子参数说明 参数 含义 类型 是否必填 默认值 Spark文件存储格式 配置SparkSQL表文件的存储

    来自:帮助中心

    查看更多 →

  • 使用Spark

    Spark任务提交失败 Spark任务运行失败 JD BCS erver连接失败 查看Spark任务日志失败 Spark Streaming任务提交问题 Spark连接其他服务认证问题 Spark连接Kafka认证错误 SparkSQL读取ORC表报错 Spark WebUI页面上stderr和stdout无法跳转到日志页面

    来自:帮助中心

    查看更多 →

  • DLI Spark

    DLI Spark 功能 通过DLI Spark节点执行一个预先定义的Spark作业。 DLI Spark节点的具体使用教程,请参见开发一个DLI Spark作业。 参数 用户可参考表1,表2和表3配置DLI Spark节点的参数。 表1 属性参数 参数 是否必选 说明 节点名称

    来自:帮助中心

    查看更多 →

  • Spark Core

    Spark Core 日志聚合下,如何查看Spark已完成应用日志 Driver返回码和RM WebUI上应用状态显示不一致 为什么Driver进程不能退出 网络连接超时导致FetchFailedException 当事件队列溢出时如何配置事件队列的大小 Spark应用执行过程中

    来自:帮助中心

    查看更多 →

  • 训练图像分类模型

    明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现图像分类

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    ore-GPU GPU 是 是 rlstudio1.0.0-ray1.3.0-cuda10.1-ubuntu18.04 CPU、GPU强化学习算法开发和训练基础镜像,预置AI引擎 CPU/GPU 是 是 mindquantum0.9.0-mindspore2.0.0-cuda11

    来自:帮助中心

    查看更多 →

  • Spark Core

    Spark Core 日志聚合下如何查看Spark已完成应用日志 Driver返回码和RM WebUI上应用状态显示不一致 为什么Driver进程不能退出 网络连接超时导致FetchFailedException 当事件队列溢出时如何配置事件队列的大小 Spark应用执行过程中,

    来自:帮助中心

    查看更多 →

  • MRS Spark

    MRS Spark 功能 通过MRS Spark节点实现在MRS中执行预先定义的Spark作业。 参数 用户可参考表1,表2和表3配置MRS Spark节点的参数。 表1 属性参数 参数 是否必选 说明 节点名称 是 节点名称,可以包含中文、英文字母、数字、“_”、“-”、“/”

    来自:帮助中心

    查看更多 →

  • Spark输入

    Spark输入 概述 “Spark输入”算子,将SparkSQL表的指定列转换成同等数量的输入字段。 输入与输出 输入:SparkSQL表列 输出:字段 参数说明 表1 算子参数说明 参数 含义 类型 是否必填 默认值 Spark数据库 SparkSQL的数据库名称。 String

    来自:帮助中心

    查看更多 →

  • 更新应用版本

    据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 更新版本后,您可以在“应用详情”页的开发版本列表查看当前应用各个版本的“版本名称”、“进展”、“模型精准率”、“模型召回率”、“F1值”、“更新时间”和可执行的“操作”。

    来自:帮助中心

    查看更多 →

  • Spark Python接口介绍

    Dataset):用于在Spark应用程序中定义RDD的类,该类提供数据集的操作方法,如map,filter。 pyspark.Broadcast:广播变量类。广播变量允许保留一个只读的变量,缓存在每一台机器上,而非每个任务保存一份拷贝。 pyspark.StorageLevel: 数据存

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了