slim 神经网模型训练 更多内容
  • 模型训练服务首页简介

    模型训练服务首页简介 模型训练服务首页展示了用户自己创建的项目和用户所属租户下面其他用户创建的公开项目,提供如下功能: 创建项目 使用模板快速创建项目,模板中已经预制数据集、特征处理算法、模型训练算法和模型验证算法。 查看和编辑项目信息 模型训练服务首页界面如下图所示。 图1 模型训练服务首页

    来自:帮助中心

    查看更多 →

  • 如何提升模型训练效果?

    在模型构建过程中,您可能需要根据训练结果,不停的调整数据、训练参数或模型,以获得一个满意的模型。更新模型时,可以通过如下几方面提升模型训练效果:检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • eagle投机小模型训练

    eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据进行训练eagle小模型,并使用自行训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的

    来自:帮助中心

    查看更多 →

  • eagle 投机小模型训练

    eagle 投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据进行训练eagle小模型,并使用自行训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • 分布式模型训练

    分布式模型训练 分布式训练功能介绍 创建单机多卡的分布式训练(DataParallel) 创建多机多卡的分布式训练(DistributedDataParallel) 示例:创建DDP分布式训练(PyTorch+GPU) 示例:创建DDP分布式训练(PyTorch+NPU) 父主题:

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard训练模型

    使用ModelArts Standard训练模型 模型训练使用流程 准备模型训练代码 准备模型训练镜像 创建调试训练作业 创建算法 创建生产训练作业 分布式模型训练 模型训练存储加速 增量模型训练 自动模型优化(AutoSearch) 模型训练高可靠性 管理模型训练作业

    来自:帮助中心

    查看更多 →

  • 训练科学计算大模型

    训练科学计算大模型 科学计算大模型训练流程与选择建议 创建科学计算大模型训练任务 查看科学计算大模型训练状态与指标 发布训练后的科学计算大模型 管理科学计算大模型训练任务 科学计算大模型训练常见报错与解决方案 父主题: 开发盘古科学计算大模型

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 创建实时预测作业

    实时预测作业必须选择训练FiBiNet模型的参与方计算节点发布的数据集。 创建训练模型时参数必须有"save_format": "SAVED_MODEL"。 创建联邦预测作业 实时预测作业在本地运行,目前仅支持深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理

    来自:帮助中心

    查看更多 →

  • GS

    max_epoch integer 模型每次训练的迭代次数上限。 learning_rate real 模型训练的学习速率,推荐缺省值1。 dim_red real 模型特征维度降维系数。 hidden_units integer 模型隐藏层神经元个数。如果训练发现模型长期无法收敛,可以适量提升本参数。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    max_epoch integer 模型每次训练的迭代次数上限。 learning_rate real 模型训练的学习速率,推荐缺省值1。 dim_red real 模型特征维度降维系数。 hidden_units integer 模型隐藏层神经元个数。如果训练发现模型长期无法收敛,可以适量提升本参数。

    来自:帮助中心

    查看更多 →

  • 数字人模型训练推理

    数字人模型训练推理 Wav2Lip推理基于DevServer适配PyTorch NPU推理指导(6.3.907) Wav2Lip训练基于DevServer适配PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • AIGC模型训练推理

    906) LLaVA模型基于DevServer适配PyTorch NPU预训练指导(6.3.906) LLaVA模型基于DevServer适配PyTorch NPU推理指导(6.3.906) SDXL基于Standard适配PyTorch NPU的Finetune训练指导(6.3.905)

    来自:帮助中心

    查看更多 →

  • 文生视频模型训练推理

    文生视频模型训练推理 CogVideoX模型基于DevServer适配PyTorch NPU全量训练指导(6.3.911) Open-Sora1.2基于DevServer适配PyTorch NPU训练推理指导(6.3.910) Open-Sora-Plan1.0基于DevServer适配PyTorch

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    max_epoch integer 模型每次训练的迭代次数上限。 learning_rate real 模型训练的学习速率,推荐缺省值1。 dim_red real 模型特征维度降维系数。 hidden_units integer 模型隐藏层神经元个数。如果训练发现模型长期无法收敛,可以适量提升本参数。

    来自:帮助中心

    查看更多 →

  • 模型训练新建模型训练工程的时候,选择通用算法有什么作用?

    模型训练新建模型训练工程的时候,选择通用算法有什么作用? 通用算法目前包括:分类算法、拟合算法、聚类算法、其他类型。用户选择不同的通用算法类型,并勾选“创建入门模型训练代码”,便可以自动生成对应类型的代码模版。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 各个模型训练前文件替换

    各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型训练开始前,针对falcon-11B模型中的tokenizer文件

    来自:帮助中心

    查看更多 →

  • 各个模型训练前文件替换

    各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型训练开始前,针对falcon-11B模型中的tokenizer文件

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了