AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    scikit learn机器学习 更多内容
  • 调用transformers出现ImportError: libcblas.so.3: cannot open shared object file: No such file or directory

    file: No such file or directory”。 原因分析 scikit-learn库版本需要升级。 处理方法 升级scikit-learn库,执行“pip install scikit-learn --upgrade”。 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • 如何用ModelArts训练基于结构化数据的模型?

    针对一般用户,ModelArts提供自动学习的预测分析场景来完成结构化数据的模型训练。 针对高阶用户,ModelArts在开发环境提供创建Notebook进行代码开发的功能,在训练作业提供创建大数据量训练任务的功能;用户在开发、训练流程中使用Scikit_Learn、XGBoost或Spark_MLlib引擎均可。

    来自:帮助中心

    查看更多 →

  • 数据准备

    类型特征,因此对所有特征使用Scikit-Learn的StandardScaler进行了归一化。为了模拟横向联邦学习场景,将数据集随机划分为三个大小类似的部分:(1)xx医院的训练集;(2)其他机构的训练集;(3)独立的测试集,用于准确评估横向联邦学习得到的模型准确率。此外由于原

    来自:帮助中心

    查看更多 →

  • AI引擎Scikit_Learn0.18.1的运行环境怎么设置?

    AI引擎Scikit_Learn0.18.1的运行环境怎么设置? 在ModelArts的算法管理页面,创建算法时勾选“显示旧版镜像”,选择XGBoost-Sklearn引擎即可。 ModelArts创建算法操作请参见创建算法。 ModelArts创建训练作业操作请参见创建训练作业。

    来自:帮助中心

    查看更多 →

  • ModelArts统一镜像列表

    Notebook、训练、推理部署 表2 PyTorch 预置镜像 适配芯片 适用范围 pytorch_2.1.0-cann_8.0.rc1-py_3.9-euler_2.10.7-aarch64-snt9b Ascend snt9b Notebook、训练、推理部署 pytorch_1.11.0-cann_8

    来自:帮助中心

    查看更多 →

  • 创建模型不同方式的场景介绍

    镜像中的元模型,可对所有迭代和调试的模型进行统一管理。 约束与限制 自动学习项目中,在完成模型部署后,其生成的模型也将自动上传至模型列表中。但是自动学习生成的模型无法下载,只能用于部署上线。 创建模型、管理模型版本等功能目前是免费开放给所有用户,使用此功能不会产生费用。 创建模型的几种场景

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    最优的训练代码。 新建联邦学习工程:创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 新建训练服务:调用已归档的模型包,对新的数据集进行训练,得到训练结果。 新建超参优化服务:通过训练结果对比,为已创建的训练工程选择一组最优超参组合。

    来自:帮助中心

    查看更多 →

  • Notebook专属预置镜像列表

    Notebook基础镜像x86 PyTorch PyTorch包含三种镜像: 镜像一:pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 镜像二:pytorch1.10-cuda10.2-cudnn7-ubuntu18.04 镜像三:pytorch1.4-cuda10

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    04 GPU算法开发和训练基础镜像,预置AI引擎MindSpore-GPU GPU 是 是 rlstudio1.0.0-ray1.3.0-cuda10.1-ubuntu18.04 CPU、GPU强化学习算法开发和训练基础镜像,预置AI引擎 CPU/GPU 是 是 mindquantum0

    来自:帮助中心

    查看更多 →

  • 环境准备

    transformers执行需要高版本的scikit-learn、acclerate,详情请参见常见问题5、常见问题6。此处执行升级命令: # shell pip install scikit-learn accelerate --upgrade transformers库的training_args

    来自:帮助中心

    查看更多 →

  • 功能咨询

    本地导入的算法有哪些格式要求? 欠拟合的解决方法有哪些? 旧版训练迁移至新版训练需要注意哪些问题? ModelArts训练好后的模型如何获取? AI引擎Scikit_Learn0.18.1的运行环境怎么设置? TPE算法优化的超参数必须是分类特征(categorical features)吗 模型可视化作业中各参数的意义?

    来自:帮助中心

    查看更多 →

  • 查询模型列表

    UTC'的毫秒数。 description String 模型描述信息。 source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为“auto”。 父主题: 模型管理

    来自:帮助中心

    查看更多 →

  • 推理专属预置镜像列表

    myhuaweicloud.com/aip/tensorflow_2_6:tensorflow_2.6.0-cuda_11.2-py_3.7-ubuntu_18.04-x86_64-20220524162601-50d6a18 表2 PyTorch AI引擎版本 支持的运行环境 镜像名称

    来自:帮助中心

    查看更多 →

  • 查询模型对象列表

    UTC'的毫秒数。 description String 模型描述信息。 source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为auto。 父主题: 模型管理

    来自:帮助中心

    查看更多 →

  • 查询模型详情

    模型来源的类型。 当模型为自动学习部署过来时,取值为“auto”。 当模型是用户通过训练作业或OBS模型文件部署时,此值为空。 model_type String 模型类型,取值为:TensorFlow/MXNet/Spark_MLlib/Scikit_Learn/XGBoost/Min

    来自:帮助中心

    查看更多 →

  • 查询作业引擎规格

    engine_type integer 训练作业的引擎类型。 1:TensorFlow。 2:MXNet。 4:Caffe。 5:Spark_MLlib 6: Scikit Learn 9:XGBoost-Sklearn 10:Pytorch 13:Ascend-Powerd-Engine 17:

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    适用于人工智能与机器学习场景的合规实践 该示例模板中对应的合规规则的说明如下表所示: 表1 合规包示例模板说明 合规规则 规则中文名称 涉及云服务 规则描述 cce-cluster-end-of-maintenance-version CCE集群版本为处于维护的版本 cce CC

    来自:帮助中心

    查看更多 →

  • ModelArts支持哪些AI框架?

    04 GPU算法开发和训练基础镜像,预置AI引擎MindSpore-GPU GPU 是 是 rlstudio1.0.0-ray1.3.0-cuda10.1-ubuntu18.04 CPU、GPU强化学习算法开发和训练基础镜像,预置AI引擎 CPU/GPU 是 是 mindquantum0

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    化问题 深度学习预备知识和深度学习概览 介绍深度学习预备知识,深度学习概览 华为云EI概览 介绍华为AI的认知与EI的由来,并详细介绍华为云EI企业智能 Python编程基础实验 介绍Python编程基础实验相关知识 TensorFlow介绍 介绍TensorFlow的框架,TensorFlow2

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了