AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习降低训练时间开销 更多内容
  • 模型训练服务简介

    索及云端编码及调试 联邦学习&重训练,保障模型应用效果 支持联邦学习,模型可以采用多地数据进行联合训练,提升样本多样性,提升模型效果 支持迁移学习,只需少量数据即可完成非首站点模型训练,提升模型泛化能力 模型自动重训练,持续优化模型效果,解决老化劣化问题 预置多种高价值通信增值服务,缩短模型交付周期

    来自:帮助中心

    查看更多 →

  • 方案概述

    方案架构 天宽昇腾云行业大模型适配服务通过深度学习算法优化与高效计算,结合华为昇腾算力,为各行业提供全面的大模型迁移、适配与优化服务。天宽通过深度优化昇腾算力,结合大规模分布式训练、模型微调与部署等核心能力,针对不同行业的需求,为客户提供从模型设计、训练到部署的一站式服务,助力企业快速落地AI应用。

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    能会发现还缺少某一部分数据源,反复调整优化。 训练模型 俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 如何降低直播延时?

    如何降低直播延时? 一般情况下,RTMP推流+FLV播放的正常延迟在5s左右,若您的直播出现延迟时间过长的现象,可参考以下方式进行性能优化。 GOP设置 GOP:(Group of Pictures)画面组,一个GOP就是一组连续的画面,每个画面都是一帧,一个GOP就是大量帧的集

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 分布式训练功能介绍

    分布式训练功能介绍 ModelArts提供了如下能力: 丰富的官方预置镜像,满足用户的需求。 支持基于预置镜像自定义制作专属开发环境,并保存使用。 丰富的教程,帮助用户快速适配分布式训练,使用分布式训练极大减少训练时间。 分布式训练调测的能力,可在PyCharm/VSCode/J

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    ,因为监督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更

    来自:帮助中心

    查看更多 →

  • 方案概述

    Turbo高性能,加速训练过程 训练数据集高速读取,避免GPU/NPU因存储I/O等待产生空闲,提升GPU/NPU利用率。 大模型TB级Checkpoint文件秒级保存和加载,减少训练任务中断时间。 3 数据导入导出异步化,不占用训练任务时长,无需部署外部迁移工具 训练任务开始前将数据从OBS导入到SFS

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    去噪处理:去除无关或异常值,减少对模型训练的干扰。 数据预处理的目的是保证数据集的质量,使其能够有效地训练模型,并减少对模型性能的不利影响。 模型开发:模型开发是大模型项目中的核心阶段,通常包括以下步骤: 选择合适的模型:根据任务目标选择适当的模型。 模型训练:使用处理后的数据集训练模型。 超参数调优

    来自:帮助中心

    查看更多 →

  • 降低IO的处理方案

    降低IO的处理方案 问题现象 在DWS实际业务场景中因IO高、IO瓶颈导致的性能问题较多,其中应用业务设计不合理导致的问题占大多数。本文从应用业务优化角度,以常见触发IO慢的业务SQL场景为例,指导如何通过优化业务去提升IO效率和降低IO。 确定IO瓶颈&识别高IO的语句 通过以

    来自:帮助中心

    查看更多 →

  • 降低内存的处理方案

    降低内存的处理方案 如果当前集群内存负载较高,或出现“memory is temporary unavailable”内存报错,首先利用日志信息确定内存异常节点,然后连接到该节点查询pv_total_memory_detail视图确认当前是否还存在内存不足问题,可比较proces

    来自:帮助中心

    查看更多 →

  • 基于开销的清理延迟

    取值范围:整型,0~100,正数值表示打开基于开销的清理延迟特性;0表示关闭基于开销的清理延迟特性。 默认值:1 vacuum_cost_page_hit 参数说明:清理一个在共享缓存里找到的缓冲区的预计开销。表示锁住缓冲池、查找共享的Hash表、扫描页面内容的开销。 该参数属于USERSET类

    来自:帮助中心

    查看更多 →

  • 基于开销的清理延迟

    取值范围:整型,0~100,正数值表示打开基于开销的清理延迟特性;0表示关闭基于开销的清理延迟特性。 默认值: vacuum_cost_page_hit 参数说明:清理一个在共享缓存里找到的缓冲区的预计开销。表示锁住缓冲池、查找共享的Hash表、扫描页面内容的开销。 该参数属于USERSET类型

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型只能回答训练样本中的问题

    训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据质量:请检查训练数据的质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    Turbo高性能,加速训练过程 训练数据集高速读取,避免GPU/NPU因存储I/O等待产生空闲,提升GPU/NPU利用率。 大模型TB级Checkpoint文件秒级保存和加载,减少训练任务中断时间。 3 数据导入导出异步化,不占用训练任务时长,无需部署外部迁移工具 训练任务开始前将数据从OBS导入到SFS

    来自:帮助中心

    查看更多 →

  • 基于开销的清理延迟

    vacuum_cost_delay 参数说明:指定开销超过vacuum_cost_limit的值时进程将进入休眠的时间长度。 参数类型:USERSET 取值范围:整型,0~100,单位为毫秒(ms)。正数值表示打开基于开销的清理延迟特性;0表示关闭基于开销的清理延迟特性。 默认值:0 许多系统

    来自:帮助中心

    查看更多 →

  • 基于开销的清理延迟

    VACUUM”章节)语句执行过程中,系统维护一个内部的记数器,跟踪所执行的各种I/O操作的近似开销。如果积累的开销达到了vacuum_cost_limit声明的限制,则执行这个操作的线程将睡眠vacuum_cost_delay指定的时间。然后它会重置记数器然后继续执行。 这个特性是缺省关闭的。如需开启,需

    来自:帮助中心

    查看更多 →

  • 基于开销的清理延迟

    取值范围:整型,0~100,单位为ms,正数值表示打开基于开销的清理延迟特性;0表示关闭基于开销的清理延迟特性。 默认值:0 vacuum_cost_page_hit 参数说明:清理一个在共享缓存里找到的缓冲区的预计开销。表示锁住缓冲池、查找共享的Hash表、扫描页面内容的开销。 该参数属于USERSET类

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    Turbo高性能,加速训练过程 训练数据集高速读取,避免GPU/NPU因存储I/O等待产生空闲,提升GPU/NPU利用率。 大模型TB级Checkpoint文件秒级保存和加载,减少训练任务中断时间。 3 数据导入导出异步化,不占用训练任务时长,无需部署外部迁移工具 训练任务开始前将数据从OBS导入到SFS

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了