AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习工作站跑模型90 更多内容
  • 使用模型

    ,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 方案概述

    无法发挥云上弹性按需的效果,还影响仿真工作稳定性; 以传统方式将芯片研发环境迁移云上的解决方案严重改变了芯片设计工程师线下操作方式,增加了学习成本,降低了工作效率; 多地域的研发中心协同能力不足,计算资源调度差; 作业、资源监控不直观,作业状态通知不全面、不及时,导致作业运行失败频发,资源有效利用率不高。

    来自:帮助中心

    查看更多 →

  • 媒体处理

    ,节目的编辑处理将由多个编辑工作站协作完成。为实现多个编辑工作站访问到同一素材文件,栏目组选用了弹性文件服务。首先将同一文件系统挂载到栏目组的作为上载工作站和编辑工作站 云服务器 上,再将素材文件由上载工作站上传到挂载的文件系统,最终实现多个编辑工作站直接对挂载文件系统中的素材进行编辑。

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    去噪处理:去除无关或异常值,减少对模型训练的干扰。 数据预处理的目的是保证数据集的质量,使其能够有效地训练模型,并减少对模型性能的不利影响。 模型开发:模型开发是大模型项目中的核心阶段,通常包括以下步骤: 选择合适的模型:根据任务目标选择适当的模型模型训练:使用处理后的数据集训练模型。 超参数调优

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts自动学习与ModelArts PRO的区别是什么? 在ModelArts中图像分类和物体检测具体是什么? 在ModelArts自动学习模型训练图片异常怎么办? 在ModelArts自动学习中,如何进行增量训练? 创建自动学习项目时,如何快速创建OBS桶及文件夹?

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    知识共享 应用授权 旗舰版 适用于对机器人答准率有高要求,数据样本大的场景,包括以下功能模块: 包含“专业版”功能,以及以下功能。 深度学习模型训练 如何修改机器人规格 登录CBS控制台。 在 智能问答机器人 列表中,选择“操作”列的“规格修改”。 图1 规格修改 依据使用需求修改机器人的规格。

    来自:帮助中心

    查看更多 →

  • 套餐包

    规格的套餐包。 ModelArts提供了AI全流程开发的套餐包,面向有AI基础的开发者,提供机器学习深度学习的算法开发及部署全功能,包含数据处理、模型开发、模型训练、模型管理和模型部署流程。 约束限制 套餐包在购买和使用时的限制如下: 套餐包和购买时选定的区域绑定,套餐包只能使

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    创建模型微调任务 模型微调是指调整大型语言模型的参数以适应特定任务的过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现的场景。这是通过在与任务相关的微调数据集上训练模型来实现的,所需的微调量取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 方案概述

    AI空间布置 AI空间算法:AI识别空间大小、动线、风水等维度参数,做到空间合理分区、科学布置; 模型智能布置:学习模型的色系、大小、风格,根据空间算法智能选择适配且搭配美观的模型组合 图5 模型智能布置 核心技术2:自研云渲染技术,实现高画质、交互式的实时渲染效果 云渲染技术 强大AI

    来自:帮助中心

    查看更多 →

  • 场景介绍

    不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 场景介绍

    不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 产品概述

    数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据使用流图,提供插件化的 区块链

    来自:帮助中心

    查看更多 →

  • 方案概述

    沉淀1000+疾病的决策模型,10000+自动化运营触达服务,4000+知识算子推理单元和300+的机器学习算子推理单元,疾病判断的敏感性接近100% ,准确度可以超过90% 全栈自主可控:从底层芯片到顶层应用,全自主知识产权,为医疗机构提供了一个稳定、可靠、安全的平台,可以保证

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了