基于PyTorch NPU快速部署开源大模型

基于PyTorch NPU快速部署开源大模型

    怎么用pytorch深度学习 更多内容
  • 图像搜索

    云容器引擎-成长地图 | 华为云 图像搜索 图像搜索(ImageSearch)基于深度学习与图像识别技术,结合不同应用业务和行业场景,利用特征向量化与搜索能力,帮助客户从指定图库中搜索相同或相似的图片。 免费体验 图说E CS 立即使用 立即使用 成长地图 由浅入深,带您玩转ImageSearch

    来自:帮助中心

    查看更多 →

  • 产品术语

    产品术语 A AI应用市场 提供AI模型的交易市场,是AI消费者接触NAIE云服务的线上门户,是AI消费者对已上架的AI模型进行查看、试用、订购、下载和反馈意见的场所。 AI引擎 可支持用户进行机器学习深度学习、模型训练的框架,如TensorflowSpark MLlib、MXNe

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    新建联邦学习作业 功能介绍 新建联邦学习作业 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-jobs 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 项目ID,最大32位,由字母和数字组成

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是

    来自:帮助中心

    查看更多 →

  • 查询用例结果

    查询例结果 功能介绍 查询例结果 URI POST /v4/{project_id}/versions/{version_uri}/testcases/{case_uri}/results/batch-query 表1 路径参数 参数 是否必选 参数类型 描述 project_id

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    介绍语言处理相关知识,传统语音模型,深度神经网络模型和高级语音模型 自然语言处理 理论和应用 技术自然语言处理的预备知识,关键技术和应用系统 华为AI发展战略与全栈全场景解决方案介绍 介绍华为AI的发展战略和解决方案 ModelArts概览 介绍人工智能、机器学习深度学习以及ModelArts相关知识

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    面向AI场景使用OBS+SFS Turbo的存储加速方案概述 应用场景 近年来,AI快速发展并应用到很多领域中,AI新产品掀起一波又一波热潮,AI应用场景越来越多,有自动驾驶、大模型、AIGC、科学AI等不同行业。AI人工智能的实现需要大量的基础设施资源,包括高性能算力,高速存储

    来自:帮助中心

    查看更多 →

  • 用委托替换继承

    委托替换继承 通过这种重构,您可以从继承层次结构中删除类,同时保留父类的功能。在重构过程中,会创建一个私有内部类来继承以前的超类或接口。通过新创建的内部类调用父类的选定方法。 执行重构 在代码编辑器中,选择要重构的类,并将光标放置在要从其继承层次结构中删除继承的类中。 在主菜单

    来自:帮助中心

    查看更多 →

  • 成长地图

    CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍 应用容器化改造流程 步骤1:对应用进行分析

    来自:帮助中心

    查看更多 →

  • 设置用例结果

    设置例结果 功能介绍 设置例结果 URI POST /v4/{project_uuid}/versions/{version_uri}/testcases/{case_uri}/results 表1 路径参数 参数 是否必选 参数类型 描述 project_uuid 是 String

    来自:帮助中心

    查看更多 →

  • 查询并导出课程学习记录

    查询并导出课程学习记录 前提条件 用户具有“查询课程记录”权限 操作步骤: 登录ISDP系统,选择“作业人员->学习管理->学习记录”,查询课程学习记录 点击顶部“课程学习记录”可以在这里对学习记录进行查询以及导出,筛选说明如下表: 图1 课程记录查询条件 表1 “课程学习记录”筛选项

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 执行ID选取截断 执行纵向联邦分箱和IV计算作业 执行样本对齐 查询样本对齐结果 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 创建可信联邦学习作业

    创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    Megatron-DeepSpeed Megatron-DeepSpeed是一个基于PyTorch深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • 概要

    概要 本章节主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • IAM 身份中心

    CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍 应用容器化改造流程 步骤1:对应用进行分析

    来自:帮助中心

    查看更多 →

  • 镜像咨询类

    镜像咨询类 镜像怎么选? 没有我需要的镜像怎么办? 有没有自带特定应用(比如OpenVPN、PyTorch)的镜像? 镜像和备份有什么区别? 可以裁剪镜像吗? 如何将一个账号的 云服务器 迁移至另一个账号的其他区域? 如何备份云 服务器 当前状态,方便以后系统故障时进行恢复? 创建的私有镜像如何使用到已有的云服务器上?

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了