AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    预训练深度学习 更多内容
  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • ModelArts入门实践

    ore,训练使用的资源是Ascend。 主流开源大模型基于Standard适配PyTorch NPU训练指导 本案例基于ModelArts Standard供的昇腾计算资源,指导用户完成Llama、Qwen、ChatGLM、Yi、Baichuan等常见开源大模型的训练、SFT微调、LoRA微调训练过程。

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    力,保障用户训练作业的长稳运行 提供训练作业断点续训与增量训练能力,即使训练因某些原因中断,也可以基于checkpoint接续训练,保障需要长时间训练的模型的稳定性和可靠性,避免重头训练耗费的时间与计算成本 支持训练数据使用SFS Turbo文件系统进行数据挂载,训练作业产生的中间和结果等数据可以直接高速写入到SFS

    来自:帮助中心

    查看更多 →

  • 创建智能标注作业

    默认为1,表示单机模式。目前仅支持此参数值。 表2 标注 参数 说明 智能标注类型 “标注”。“标注”表示选择用户模型管理里面的模型,选择模型时需要注意模型类型和数据集的标注类型相匹配。标注结束后,如果标注结果符合平台定义的标准标注格式,系统将进行难例筛选,该步骤不影响标注结果。 选择模型及版本

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    重新训练 对第一次训练无影响,仅影响任务重跑。 “是”:清空上一轮的模型结果后重新开始训练。 “否”:导入上一轮的训练结果继续训练。适用于欠拟合的情况。 批量大小 一次训练所选取的样本数。 训练数据集切分数量 将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。

    来自:帮助中心

    查看更多 →

  • yaml配置文件参数配置说明

    源库,用于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示训练类型。可选择值:[pt、sf、rm、ppo],pt代表训练,sft代表指令监督微调,rm代表奖励模型训练,ppo代表PPO训练。

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:pt、sft、rm、ppo、dpo。 pt代表训练; sft代表指令监督微调; rm代表奖励模型训练; ppo代表PPO训练;

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:pt、sft、rm、ppo、dpo。 pt代表训练; sft代表指令监督微调; rm代表奖励模型训练; ppo代表PPO训练;

    来自:帮助中心

    查看更多 →

  • 盘古NLP大模型能力与规格

    盘古NLP大模型能力与规格 盘古NLP大模型是业界首个超千亿参数的中文训练大模型,结合了大数据训练和多源知识,借助持续学习不断吸收海量文本数据,持续提升模型性能。除了实现行业知识检索、文案生成、阅读理解等基础功能外,盘古NLP大模型还具备模型调用等高级特性,可在智能客服、创意

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在 对象存储服务 (OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • 大模型微调训练类问题

    大模型微调训练类问题 无监督领域知识数据量无法支持增量训练,如何进行模型学习 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.907) 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.907) 训练、SFT全参微调训练、LoRA微调训练 介绍主流的开源大模型Llama系列、Qwen系列、

    来自:帮助中心

    查看更多 →

  • ModelArts

    如何查看ModelArts消费详情? 更多 自动学习 自动学习生成的模型,存储在哪里?支持哪些其他操作? 在ModelArts中图像分类和物体检测具体是什么? 自动学习训练后的模型是否可以下载? 自动学习项目中,如何进行增量训练? 更多 训练作业 ModelArts中的作业为什么一直处于等待中?

    来自:帮助中心

    查看更多 →

  • 自动学习项目中,如何进行增量训练?

    自动学习项目中,如何进行增量训练? 在自动学习项目中,每训练一次,将自动产生一个训练版本。当前一次的训练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了