文本纠错深度学习模型 更多内容
  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 什么是图像搜索

    什么是 图像搜索 图像搜索( Image Search ,又称为多媒体搜索)基于深度学习与图像识别技术,是一套开箱即用的场景化搜索服务,支持图像等数据的管理和搜索,提供多种通用预置场景的搜索能力,并支持低成本、高敏捷的定制化服务,为用户提供安全、可靠、快速、准确的一键部署场景化内容搜索需求。

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习深度学习模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • ModelArts自动学习与ModelArts PRO的区别

    ModelArts自动学习与ModelArts PRO的区别 ModelArts自动学习,提供了AI初学者,零编码、零AI基础情况下,可使用自动学习功能,开发用于图像分类、物体检测、预测分析、文本分类、声音分类等场景的模型。 而ModelArts PRO是一款为企业级AI应用打造

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下 logging_steps 2 用于指定模型训练过程中,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 save_steps 5000 指定模型训练过程中,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务

    来自:帮助中心

    查看更多 →

  • 方案概述

    。 方案优势 高识别 该方案基于深度学习技术,对特定领域场景的 语音识别 进行优化,识别率高。 稳定可靠 该方案成功应用于各类场景,基于华为等企业客户的长期实践,经受过复杂场景考验。 可定制化 该方案针对客户的特定场景需求,定制垂直领域的语音识别模型,识别效果更精确。 约束与限制 部

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。 核函数特征交互神经网络是深度网络因子分解机的改进版本,深度网络因子分解机通过

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。

    来自:帮助中心

    查看更多 →

  • 部署文本分类服务

    ,已将模型部署为在线服务。 服务测试 服务部署节点运行成功后,单击“实例详情”可跳转至对应的在线服务详情页面。单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习文本分类项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,您可添加文本进行测

    来自:帮助中心

    查看更多 →

  • 使用AI Gallery微调大师训练模型

    上,这些模型的参数可能并不都是最合适的,因此需要进行微调。 AI Gallery的模型微调,简单易用,用户只需要选择训练数据、创建微调任务,模型微调就会对数据进行训练,快速生成模型。 约束限制 如果模型的“任务类型”是“文本问答”或“文本生成”,则支持模型微调。如果模型的“任务类

    来自:帮助中心

    查看更多 →

  • 创建预测分析项目

    可自行选择您需要预测的列名。 标签列是预测模型的输出。模型训练步骤将使用全部信息训练预测模型,该模型以其他列的数据为输入,以标签列的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “输出路径”是存储自动学习在运行过程中所有产物的路径。

    来自:帮助中心

    查看更多 →

  • 无监督领域知识数据量无法支持增量预训练,如何进行模型学习

    无监督领域知识数据量无法支持增量预训练,如何进行模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    数据集是模型微调的基础,首先需要创建用于模型训练的数据集。 创建模型微调流水线 通过模型微调任务进行模型训练,微调任务结束后,将生成改进后的新模型。 部署模型 模型部署是通过为基座模型(即原模型)和微调后的新模型创建用于预测的模型服务的过程实现。 测试模型调优效果 在线测试微调后的模型(输入问题发起请求获取数据分

    来自:帮助中心

    查看更多 →

  • 排序策略

    单击选择训练结果在OBS中的保存根路径,训练完成后,会将模型和日志文件保存在该路径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • AI Gallery功能介绍

    面向开发者提供了AI Gallery大模型开源社区,通过大模型为用户提供服务,普及大模型行业。AI Gallery提供了大量基于昇腾云底座适配的三方开源大模型,同步提供了可以快速体验模型的能力、极致的开发体验,助力开发者快速了解并学习模型。 构建零门槛线上模型体验,零基础开发者开箱即用,初学者三行代码使用所有模型

    来自:帮助中心

    查看更多 →

  • 启动智能任务

    集,不支持启动主动学习和自动分组任务,支持预标注任务。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例筛选等多种手

    来自:帮助中心

    查看更多 →

  • 文本标注任务

    注服务在文本标注场景下的竞争力。当前支持文件类型包括:txt、yaml、csv、xml,文件编码仅支持UTF-8。单个文本不超过100M。 图1 文本标注 绘制对象 单击文本标注任务名称,选择任意一个文件进入文本标注模板工具进行人工标注。 设置文档属性和意图。 单击“文档属性”,

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了