AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    数学学习海洋深度图 更多内容
  • 什么是自动学习?

    什么是自动学习? 自动学习功能可以根据标注的数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。 自动学习功能主要面向无编码能力的用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 可信联邦学习作业

    可信联邦学习作业 概述 创建横向训练型作业 横向联邦训练作业对接MA 创建横向评估型作业 创建纵向联邦学习作业 执行作业 查看作业计算过程和作业报告 删除作业 安全沙箱机制

    来自:帮助中心

    查看更多 →

  • 气象类数据集格式要求

    文件内容 文件格式 文件要求 海洋气象 nc、cdf、netcdf、gr、gr1、grb、grib、grb1、grib1、gr2、grb2、grib2 数据集最大100万个文件,单文件最大10GB,整个数据集最大10TB。 海洋数据通常包含全球或区域性的海洋变量,如温度(T)、气压(

    来自:帮助中心

    查看更多 →

  • 科学计算大模型

    科学计算大模型 气象/降水模型 海洋模型 父主题: API

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    状态码: 200 新建联邦学习作业成功 { "job_id" : "c098faeb38384be8932539bb6fbc28d3" } 状态码 状态码 描述 200 新建联邦学习作业成功 401 操作无权限 500 内部 服务器 错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 查询并导出课程学习记录

    查询并导出课程学习记录 前提条件 用户具有“查询课程记录”权限 操作步骤: 登录ISDP系统,选择“作业人员->学习管理->学习记录”,查询课程学习记录 点击顶部“课程学习记录”可以在这里对学习记录进行查询以及导出,筛选说明如下表: 图1 课程记录查询条件 表1 “课程学习记录”筛选项

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 执行ID选取截断 执行纵向联邦分箱和IV计算作业 执行样本对齐 查询样本对齐结果 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 创建可信联邦学习作业

    创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 使用数据工程构建科学计算大模型数据集

    "300m", "400m", "500m")的4个深海层特征(海盐、海洋流速u、海洋流速v、温度)。 - 全球范围,纬度90N~-90S,经度0W~360E。 训练集和验证集均推荐使用>1个月的历史数据。 海洋模型数据获取方式:https://data.hycom.org/datasets/GLBv0

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型部署任务

    模型类型 选择“科学计算大模型”。 场景 选择模型场景,分为“全球天气要素预测”、“全球中期降水预测”、“全球中期海洋智能预测”、“区域中期海洋智能预测”、“全球中期海洋生态智能预测”、“全球中期海量智能预测”。 全球中期天气要素预测模型可以选择1个或者多个模型进行部署。 如果使用

    来自:帮助中心

    查看更多 →

  • 保存横向联邦学习作业

    ague_id}/fl-jobs/{job_id} 保存横向联邦学习作业 响应示例 无 状态码 状态码 描述 200 保存横向联邦学习作业成功 401 操作无权限 500 内部服务器错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • C++源码包含math.h导致数学函数重定义

    原因:C++库中实现了部分数学函数库,并在头文件中进行了using 引用,导致与Huawei LiteOS系统C库中的定义冲突了。解决方案:C++源码math.h的包含修改为cmath,即“#include ”修改为 “#include ”。

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 查询联邦学习作业列表 父主题: 空间API

    来自:帮助中心

    查看更多 →

  • 微认证课程学习常见问题

    微认证课程学习常见问题 如何获得微认证的学习材料? 微认证课程学习的形式是什么样的? 在哪里可以进行课程学习? 课程里有测试题,是否通过就能拿到证书? 父主题: 华为云微认证

    来自:帮助中心

    查看更多 →

  • 盘古科学计算大模型能力与规格

    此版本在Studio上首次发布,用于海洋基础要素预测,支持在线推理、能力调测特性,可以Snt9B3部署,可支持1个推理单元部署推理。 Pangu-AI4S-Ocean_Regional_24h-20241030 此版本在Studio上首次发布,用于区域海洋基础要素预测,支持预训练、微调

    来自:帮助中心

    查看更多 →

  • 二次开发

    二次开发 通过CrownCAD二次开发,用户可以自动化执行任务,完成手动交互式建模难以实现的复杂操作;引入数学函数和几何运算,支持更精确的线条拟合;参数式生成模型,将程序做成带输入的命令,分享给平台其他用户使用;灵活组织API,实现系统默认未提供的建模功能;还可以通过查询命令,了解探索内核工作机制。

    来自:帮助中心

    查看更多 →

  • 自动学习为什么训练失败?

    自动学习为什么训练失败? 当自动学习项目训练失败时,请根据如下步骤排除问题。 进入当前账号的费用中心,检查是否欠费。 是,建议您参考华为云账户充值,为您的账号充值。 否,执行2。 检查存储图片数据的OBS路径。是否满足如下要求: 此OBS目录下未存放其他文件夹。 文件名称中无特殊

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了