无服务器图片生成缩略图

无服务器图片生成缩略图

    深度学习做图片相似度 更多内容
  • 启动智能任务

    练 accurate:准确型,除已标注样本外,会额外使用未标注的样本半监督训练 ambiguity 否 Boolean 是否通过图片模糊来聚类。 annotation_output 否 String 主动学习标注结果输出路径。 collect_rule 否 String 样本

    来自:帮助中心

    查看更多 →

  • 配置知识融合时,如何选择融合标识符和配置属性

    知识融合需要初步筛选与融合标识符相似的实体数据。 判断属性相似 初步筛选与融合标识符相似的数据后,需要配置相似属性和相似函数,并判断数据之间的属性相似。 融合知识 对属性相似均达到阈值条件的数据进行融合。 综上所述,在创建图谱的过程中,需要配置知识融合的融合标识符、待融合的实体、相似函数和相似

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    (test_images, test_labels) = fashion_mnist.load_data() 对训练数据预处理,并查看训练集中最开始的25个图片。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 class_names =

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • ModelArts Pro的应用场景和用户群体

    快递单自动填写 识别图片中联系人信息并自动填写快递单,减少人工输入。 合同录入与审核 自动识别结构化信息与提取签名盖章区域,有助快速审核。 自然语言处理 套件 通用文本分类场景。 智能问答 通过中文分词、短文本相似、命名实体识别等自然语言处理相关技术,计算两个问题对的相似,可解决问答、对话、语料挖掘、知识库构建等问题。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 准备物体检测数据

    不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 物体检测数据集中,如果标注框坐标超过图片,将无法识别该图片为已标注图片。 数据上传至OBS 在本文档中,采用通过OBS管理控制台将数据上传至OBS桶。

    来自:帮助中心

    查看更多 →

  • 人脸比对

    ctFace。 调用失败时无此字段。 similarity Double 人脸相似,1表示最大,0表示最小,值越大表示越相似。一般情况下超过0.93即可认为是同一个人。如果图片质量较低,也会影响相似。 调用失败时无此字段。 表5 CompareFace 参数 参数类型 描述 bounding_box

    来自:帮助中心

    查看更多 →

  • 召回策略

    在UserCF算法中使用,生成的相似矩阵中为每个用户保留的若干个最相似用户。默认为100。 最小交叉 物品和物品之间被同一用户行为记录的数量,计算相似时,过滤掉共同记录小于最小交叉的item。 默认值:1。 物品活跃 物品过滤用户的活跃阈值。 取值范围:1-10000。

    来自:帮助中心

    查看更多 →

  • 标签传播算法(Label Propagation)

    Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似,节点的标签按相似传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似越大,标签越容易传播。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    更多设置:添加协同人 图7 添加协同人 协同人默认可以查看学习项目 协同人可对学习项目进行查询、任务分派、阅卷、编辑、报名设置、设置循环任务、自动分派的设置,具体允许协同人对该项目如何设置取决于管理员是否勾选具体操作。 协同人对该项目进行分派时,分派的对象取决于协同人数据权限设置的选择范围

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • SearchFace

    人脸ID,由系统内部生成的唯一ID。 external_image_id String 人脸所在的外部图片ID。 similarity Double 人脸搜索时用于被检索的相似。 external_fields Json 用户添加的额外自定义字段。 父主题: 消息对象结构

    来自:帮助中心

    查看更多 →

  • 标注物体检测数据

    在标注窗口中,您可以滚动鼠标,放大或缩小图片,方便您快速定位到物体位置。 图2 物体检测图片标注 “物体检测”类型的数据集,在标注时,支持在一张图片中添加多个标注框以及标签。需注意的是,标注框不能超过图片边缘。 当图片目录中所有图片都完成标注后,返回“自动学习工作流”页面,单击“继续运行”

    来自:帮助中心

    查看更多 →

  • 分页查询智能任务列表

    fast:快速型,仅使用已标注样本进行训练 accurate:准确型,除已标注样本外,会额外使用未标注的样本半监督训练 ambiguity Boolean 是否通过图片模糊来聚类。 annotation_output String 主动学习标注结果输出路径。 collect_rule String 样本收集规则

    来自:帮助中心

    查看更多 →

  • AllParam

    图像数据,Base64编码,要求: Base64编码后大小不超过8MB,建议。 图片为JPG/JPEG/BMP/PNG格式。 similarity Double 人脸相似,1表示最大,0表示最小,值越大表示越相似。一般情况下超过0.93即可认为是同一个人。 face_set_name String

    来自:帮助中心

    查看更多 →

  • 使用流程简介

    果,帮助用户自动进行人脸的识别、比对以及相似查询等。 使用流程 图1 使用流程 使用前必读 用户需要具备编程能力,熟悉Java、Python、iOS、Android、Node.js编程语言。 FRS服务需要用户通过调用API接口,识别图片中的人脸信息,然后返回JSON格式的识别

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • 什么是图像识别

    媒资图像标签 基于深度学习技术,准确识别图像中的视觉内容,提供多种物体、场景和概念标签,具备目标检测和属性识别等能力帮助客户准确识别和理解图像内容。主要面向媒资素材管理、内容推荐、广告营销等领域。 图1 媒资图像标签示例图 名人识别 利用深度神经网络模型对图片内容进行检测,准确识别图像中包含的影视明星、网红人物等。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了