AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习中梯度下降 更多内容
  • 排序策略

    400,400。 激活函数 神经网络的激活函数,将一个(或一组)神经元的值映射为一个输出值。 relu tanh sigmoid 神经元值保留概率 神经网络前向传播过程以该概率保留神经元的值。默认0.8。 保存根路径 单击选择训练结果在OBS的保存根路径,训练完成后,会将模型

    来自:帮助中心

    查看更多 →

  • 训练参数优化

    cay)策略,在训练过程逐步减小学习率,避免后期学习率过大。建议动态调整学习率,使用自适应优化器,如Adam、AdamW、 RMS prop等,这些优化器可以自动调整学习率。 如果您没有专业的调优经验,可以优先使用ModelArts Studio平台的默认值,再结合损失曲线动态调整。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    400,400。 激活函数 神经网络的激活函数,将一个(或一组)神经元的值映射为一个输出值。 relu tanh sigmoid 神经元值保留概率 神经网络前向传播过程以该概率保留神经元的值。默认0.8。 优化器类型 grad:梯度下降算法 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • msprobe梯度监控

    控工具监控NPU训练过程的确定性计算问题。 将两份梯度数据进行相似度对比。在有标杆问题中,可以确认训练过程精度问题出现的Step,以及抓取反向过程的问题。 使用步骤如下: 通过pip安装msprobe工具。 # shell pip install mindstudio-probe

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    为了让 问答机器人 更加智能,回答更加准确,您可以通过训练模型来提升问答机器人的效果。 问答训练通过用户问法对机器人进行测试,在匹配问题的返回结果,按相似度得分进行倒序排序,正确匹配的问题出现在前一、三、五位的占比将作为衡量模型效果的指标,数值越高代表模型效果越好。 高级版、专业版、旗舰版机器人支持问答模型训练。

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据选择:数据选择一般是指从全量数据中选择数据子集的过程。 数据可以通过相似度或者深度学习算法进行选择。数据选择可以避免人工采集图片过程引入的重复图片、相似图片等问题;在一批输入旧模型的推理数据,通过内置规则的数据选择可以进一步提升旧模型精度。 数据增强: 数据扩增通过简单的

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    型”中进行选择。 高级设置 checkpoints:在模型训练过程,用于保存模型权重和状态的机制。 关闭:关闭后不保存checkpoints,无法基于checkpoints执行续训操作。 自动:自动保存训练过程的所有checkpoints。 自定义:根据设置保存指定数量的checkpoints。

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    invalid_device fstab的设备检查 当前实例的/etc/fstab文件配置的某个设备不存在,可能会导致实例无法启动。 guestos.filesystem.device_mount_failure fstab的设备挂载状态检查 该实例存在未在/etc/fstab配置自动挂载的云盘,可能会导致实例无法启动。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    较小的学习率,反之可以使用较大的学习率。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程模型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设置训练过程学习率衰减

    来自:帮助中心

    查看更多 →

  • 优化训练超参数

    较小的学习率,反之可以使用较大的学习率。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程模型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设置训练过程学习率衰减

    来自:帮助中心

    查看更多 →

  • 迁移学习

    请按照本节的操作顺序在算法工程完成数据迁移,若其中穿插了其他数据操作,需要保证有前后衔接关系的两个代码框的dataflow名字一致。 绑定源数据 进入迁移数据JupyterLab环境编辑界面,运行“Import sdk”代码框。 单击界面右上角的图标,选择“迁移学习 > 特征迁移 > 特征准备

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 学习任务

    自由模式:可以不按顺序学习课件,可随意选择一个开始学习 解锁模式:设置一个时间,按时间进程解锁学习,解锁模式暂时不支持添加线下课和岗位测评 图4 选择模式 阶段任务 图5 阶段任务 指派范围:选择该学习任务学习的具体学员 图6 指派范围1 图7 指派范围2 设置:对学习任务进行合格标准、奖励等设置

    来自:帮助中心

    查看更多 →

  • 课程学习

    个人中心页面(我的岗位、我的技能) 在“我的学习”的页面,点击每个具体的课程卡片,进入到课程详情页面。可以按“进行、已完成,必修,选修”过滤,可以按课程标题搜索 图6 我的学习的数据列表页面 课程的详情页面,可以直接开始学习; 每个课程有多个章节,可以开始学习具体的每个章节。目前支持视频、PDF两种格式的课程。

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    文件将保存在这个目录下 logging_steps 2 用于指定模型训练过程,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 save_steps 5000 指定模型训练过程,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务 plot_loss

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 模型NPU卡数、梯度累积值取值表

    模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed)

    来自:帮助中心

    查看更多 →

  • executor内存不足导致查询性能下降

    executor内存不足导致查询性能下降 现象描述 在不同的查询周期内运行查询功能,查询性能会有起伏。 可能原因 在处理数据加载时,为每个executor程序实例配置的内存不足,可能会产生更多的Java GC(垃圾收集)。当GC发生时,会发现查询性能下降。 定位思路 在Spark UI

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了