检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
950808 转 1
预约咨询
工单提交
我有建议
未实名认证
已实名认证
立即前往
立即购买
立即购买
立即前往
立即前往
开发深度学习模型 创建和训练模型 使用如下命令创建并训练模型: 1 2 3 4 5 6 7 8 9 10 11 # create model model = keras.Sequential([ keras.layers.Flatten(input_shape=(28
查看更多 →
梯度监控 梯度监控工具提供了将模型梯度数据导出的能力。使用梯度监控工具,可以实现对训练过程模型每一层梯度信息进行监控,目前支持两种能力: 将模型权重的梯度数据导出。这种功能可以将模型权重的梯度值以统计量的形式采集出来,用以分析问题,例如检测确定性问题,使用训练状态监控工具监控NPU训练过程中的确定性计算问题。
延更慢。 梯度累加次数 训练过程经过多少次batch进行梯度累加回传更新模型参数,通过增加训练epoch,可以实现在不增加显存的情况下 达到更大的batch size效果。等价 每卡批大小= 设置的每卡批大小 * 梯度累加次数。 相应的epoch 数也应该扩大。 学习率调度器 学
IA GPU进行计算,尤其是在深度学习、大规模数据处理和高性能计算任务中,能够显著提升计算效率。 优化设计:容器镜像针对特定的任务(如深度学习框架、AI 任务等)进行优化,保证了性能和兼容性。 多种深度学习框架:NVIDIA提供了多个常用的深度学习框架的容器镜像,包括Tensor
创建单机多卡的分布式训练(DataParallel) 在深度学习领域,随着模型规模的不断扩大,训练时间也随之增加。为了提高训练效率,需要采用高效的并行计算方法。在单机环境下,如何充分利用多块GPU卡的计算能力成为一个关键问题。本章节将介绍基于PyTorch引擎的单机多卡数据并行训
深度研究 在进行复杂问题研究时,用户往往需要一个能够支持多步推理和层层拆解任务的智能系统。为此, KooSearch 引入了深度研究功能,旨在通过多轮对话交互和任务规划,帮助用户完成需要多步推理的复杂任务。用户可以在前端页面上配置模型,进行任务规划的多轮交互式修改,并选择“研究报告”
登录E CS 控制台,进入 弹性云服务器 列表页面。 在待深度诊断的ECS的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。
学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南
可见范围内的学员在学员端可看见此项目并可以进行学习,学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人
科学计算大模型的学习率调优策略如下: 学习率太小时,损失曲线几乎是一条水平线,下降非常缓慢,此时可以增大学习率,使用学习率预热(Warm-up)的方法,在训练初期逐步增加学习率,避免初始阶段学习率过小。 学习率太大时,损失曲线剧烈震荡,甚至出现梯度爆炸的问题,可以使用学习率衰减(De
课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(
学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3
本案例以“预测乳腺癌是良性/恶性”的场景为例。假设一部分的乳腺癌患者数据存储在xx医院,另一部分数据存储在某个其他机构,不同机构数据所包含的特征相同。 这种情况下,xx医院想申请使用其他机构的乳腺癌患者数据进行乳腺癌预测模型建模会非常困难。因此可以通过华为 TICS 可信智能计算平台的横向联邦功能,实现在
我的自学课程操作 登录用户平台。 单击顶部菜单栏的学习任务菜单。 进入学习任务页面,单击【自学课程】菜单 进入我的自学课程页面,卡片形式展示我学习和我收藏的课程信息。 图5 我的自学课程 单击【课程卡片】,弹出课程的详情页面,可以查看课程的详细信息开始课程的学习。 父主题: 实施步骤
backend_config.learning_rate 2.0e-5 指定学习率 backend_config.disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中用于保存模型的状态,以便在需要时恢复。这种技
自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed)
learning_rate 2.0e-5 指定学习率 backend_config.training.disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中用于保存模型的状态,以便在需要时恢复
确认学习结果 操作场景 HSS学习完白名单关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动确认这些可疑进程,并分类标记为可疑、恶意或可信进程。 学习结果确认方式,仅在创建白名单策略时可设置: “学习结果确认方式”选择的“自
横向联邦学习场景 TICS从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述
联系我们
您找到想要的内容了吗?
意见反馈
0/200
提交 取消
深度学习 梯度下降法
深度学习梯度下降法
深度学习梯度下降算法
梯度下降+深度学习
深度学习 梯度下降
深度学习梯度下降
梯度下降 深度学习
深度学习中的梯度下降法
深度学习中梯度下降
梯度下降算法是深度学习算法