AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习样本框不规则 更多内容
  • 可信智能计算服务 TICS

    可信联邦学习作业 可信联邦学习作业是 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同

    为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的

    来自:帮助中心

    查看更多 →

  • 创建智能标注作业

    lery订阅模型。 计算节点规格 在下拉中,您可以选择目前ModelArts支持的节点规格选项。 计算节点个数 默认为1。您可以根据您的实际情况选择,最大为5。 针对“物体检测”类型的标注作业,选择“主动学习”时,只支持识别和标注矩形。 图1 启动智能标注(图像分类) 图2 启动智能标注(物体检测)

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 查询样本量或者时域分析任务状态

    查询样本量或者时域分析任务状态 功能介绍 根据数据集ID查询数据集的样本量或时域分析任务状态。 URI URI格式 GET /softcomai/datalake/v1.0/datasets/metadata/status/{datasetId} 参数说明 参数名 是否必选 参数类型

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • CoT思维链

    果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。 零样本 对于无

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    标注“合格”、“不合格”,通过训练部署模型,实现产品的质检。 物体检测 物体检测项目,是检测图片中物体的类别与位置。需要添加图片,用合适的标注物体作为训练集,进行训练输出模型。适用于一张图片中要识别多个物体或者物体的计数等。可应用于园区人员穿戴规范检测和物品摆放的无人巡检。 预测分析

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    一次训练所选取的样本数。 训练数据集切分数量 将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。 DeepFM DeepFM,结合了FM和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。 表2 深度网络因子分解机参数说明

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 执行ID选取截断 执行纵向联邦分箱和IV计算作业 执行样本对齐 查询样本对齐结果 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 创建ModelArts数据增强任务

    do_validation:数据扩增前是否进行数据校验。默认值为True。 输入要求 算子输入分为两种,“数据集”或“OBS目录”。 选择“数据集”,请从下拉中选择ModelArts中管理的数据集及其版本。要求数据集类型与您在本任务中选择的场景类别一致。 选择“OBS目录”,存放结构支持“包含图片和标注信息”模式。

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 创建样本分布统计作业

    创建样本分布统计作业 创建样本分布统计作业步骤如下: 在“作业管理 > 多方安全计算”页面单击创建,进入sql开发页面,展开左侧的“合作方数据”可以看到企业A、大数据厂商B发布的不同数据集。 单击某一个数据集可以看到数据集的表结构信息。 此时企业A可以编写如下的sql语句统计双方

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    选择可参照表1中的template列 max_samples 50000 用于指定训练过程中使用的最大样本数量。如果设置了这个参数,训练过程将只使用指定数量的样本,而忽略其他样本。这可以用于控制训练过程的规模和计算需求 overwrite_cache true 用于指定是否覆盖缓

    来自:帮助中心

    查看更多 →

  • 使用TICS可信联邦学习进行联邦建模

    使用 TICS 可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景

    来自:帮助中心

    查看更多 →

  • 应用场景说明

    能力。 在形成可用的训练数据前,需要对这些影像数据进行正负样本的手工分类,符合标准的影像作为模型训练中的正样本数据。实际操作中,我们通过对单个影像实例进行查看和对比,在界面上设置“AI训练”或“学习案例”,以标识出正样本。 专家经验库按不同采集来源的图片与视频进行分类,分为任务经

    来自:帮助中心

    查看更多 →

  • 数据集版本发布失败

    数据集版本发布失败 出现此问题时,表示数据不满足数据管理模块的要求,导致数据集发布失败,无法执行自动学习的下一步流程。 请根据如下几个要求,检查您的数据,将不符合要求的数据排除后再重新启动自动学习的训练任务。 ModelArts.4710 OBS权限问题 ModelArts在跟OBS交互

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了