AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练数据集很大 更多内容
  • AI开发基本流程介绍

    能会发现还缺少某一部分数据源,反复调整优化。 训练模型 俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。

    来自:帮助中心

    查看更多 →

  • 创建训练服务

    创建训练任务,详细请参考模型训练。 删除训练任务。 模型训练工程描述 训练服务的描述信息,支持单击“”重新编辑。 切换到其他的训练工程、联邦学习工程、训练服务或超参优化服务的模型训练页面中。 模型训练运行环境信息查看和配置。 新建训练工程、联邦学习工程、训练服务或超参优化服务。 2(模型训练任务) 根据训练状态快速检索训练任务。

    来自:帮助中心

    查看更多 →

  • 模型训练

    。 单击“开始训练”,训练任务开始。 单击“关闭”,返回联邦学习工程详情界面,“模型训练任务”下方展示新建的训练任务,“训练状态”列展示任务的状态。 ALL显示所有训练任务。 WAITING表示训练任务准备中。 RUNNING表示正在训练。 FINISHED表示训练成功。 FAILED表示训练失败。

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 自动学习的每个项目对数据有哪些要求? 创建预测分析自动学习项目时,对训练数据有什么要求? 使用从OBS选择的数据创建表格数据集如何处理Schema信息? 物体检测或图像分类项目支持对哪些格式的图片进行标注和训练? 父主题: Standard自动学习

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自动学习实现口罩检测

    可以查看该数据集的“目标位置”。 查看数据集是否已导入ModelArts。 返回ModelArts管理控制台,在左侧导航栏选择“数据集”,默认进入数据集新版页面。在新版数据集列表页,单击数据集名称左侧的,展开数据集,查看“导入状态”,导入状态为“导入完成”代表示数据集导入成功,且数据集正常。

    来自:帮助中心

    查看更多 →

  • 模型训练

    是否使用增量学习 训练时是否使用增量学习,默认关闭。 是否进行集成学习 训练时是否进行集成学习,默认开启。开启后训练结果增加模型集成节点,训练结果中生成两个stacking类型的模型包。 单击图标,运行AutoML代码框内容。运行结果如图5所示。 AutoML模型训练过程中,会展

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    训练数据集预处理说明 以llama2-13b举例,使用训练作业运行:0_pl_pretrain_13b.sh训练脚本后,脚本检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行预训练任务。如果未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    训练数据集预处理说明 以llama2-13b举例,使用训练作业运行:0_pl_pretrain_13b.sh训练脚本后,脚本检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行预训练任务。如果未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    训练数据集预处理说明 以 llama2-13b 举例,使用训练作业运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行预训练任务。若未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    训练数据集预处理说明 以 llama2-13b 举例,运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理的过程。 如果已完成数据集预处理,则直接执行预训练任务。如果未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    训练数据集预处理说明 以llama2-13b举例,使用训练作业运行:0_pl_pretrain_13b.sh训练脚本后,脚本检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行预训练任务。如果未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data

    来自:帮助中心

    查看更多 →

  • 训练的数据集预处理说明

    训练数据集预处理说明 以 llama2-13b 举例,运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理的过程。 如果已完成数据集预处理,则直接执行预训练任务。如果未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data

    来自:帮助中心

    查看更多 →

  • 准备图像分类数据

    数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 创建数据集 数据准备完成后,需要创建相应项目支持的类型的数据集,具体操作请参考创建ModelArts数据集。 父主题: 使用自动学习实现图像分类

    来自:帮助中心

    查看更多 →

  • ModelArts Standard使用流程

    建议先在开发环境中调试完成训练代码后再创建生产训练作业。 创建Notebook实例 训练模型 准备算法 创建训练作业前需要先准备算法,可以订阅AI Gallery中的算法,也可以使用用户自己的算法。 准备算法 创建训练作业 创建一个训练作业,选择可用的数据集版本,并使用前面编写完成的训练脚本。训练完成后,将生成模型并存储至OBS中。

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自动学习实现垃圾分类

    描述:自定义描述您的项目详情,例如垃圾分类。 数据集:下拉选择已下载的数据集(步骤2中已成功导入的数据集,默认为下拉数据集列表中的第一个数据集)。 输出路径:选择您步骤1创建好的OBS文件夹下的路径,用来存储训练模型等相关文件。 训练规格:根据您的实际需要选择对应的训练规格。 参数填写完成,单击“创建项目”。

    来自:帮助中心

    查看更多 →

  • 排序策略

    保存根路径 单击选择训练结果在OBS中的保存根路径,训练完成后,会将模型和日志文件保存在该路径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    特征编码。 图1 数据集样例 数据预处理通常被用于评估和预测场景。本文以使用训练数据训练预处理作业,然后再将预处理方法应用于评估/预测数据为例进行说明。 前提条件 已提前准备好训练数据,和评估/预测数据。 存在未参与其他预处理作业的结构化数据集,且在创建数据集时已定义字段的分布类

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自动学习实现垃圾分类

    描述:自定义描述您的项目详情,例如垃圾分类。 数据集:下拉选择已下载的数据集(步骤2中已成功导入的数据集,默认为下拉数据集列表中的第一个数据集)。 输出路径:选择您步骤1创建好的OBS文件夹下的路径,用来存储训练模型等相关文件。 训练规格:根据您的实际需要选择对应的训练规格。 参数填写完成,单击“创建项目”。

    来自:帮助中心

    查看更多 →

  • 准备预测分析数据

    标签列指的是在训练作业中被指定为训练目标的列,即最终通过该数据集训练得到模型时的输出(预测项)。 除标签列外数据集中至少还应包含两个有效特征列(列的取值至少有两个且数据缺失比例低于10%)。 当前由于特征筛选算法限制,预测数据列建议放在数据集最后一列,否则可能导致训练失败。 表格数据集示例:

    来自:帮助中心

    查看更多 →

  • 方案概述

    该解决方案会部署如下资源: 创建两个 对象存储服务 OBS桶,一个用于存储训练数据集及ModelArts算法、推理脚本、配置文件、模型数据。另一个用于存储数据集数据集预测结果。 使用 AI开发平台 ModelArts,用于机器学习模型训练,预测故障分析结果。 使用 函数工作流 FunctionGra

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了