AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练过程中停下来 更多内容
  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 创建工程

    开发环境 联邦学习模型训练运行环境信息,可通过下拉框切换当前环境。 进入代码编辑界面 创建联邦学习训练任务,详细请参考: 创建联邦学习训练任务(简易编辑器) 创建联邦学习训练任务(WebIDE) 删除联邦学习训练工程 模型训练工程描述 描述信息,支持单击图标,编辑描述信息。 对训练任务的

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    DPO偏好训练,复制dpo_yaml样例模板内容覆盖demo.yaml文件内容。 PPO强化训练,先进行RM奖励训练任务后,复制ppo_yaml样例模板内容覆盖demo.yaml内容。 RM奖励训练,复制rm_yaml样例模板内容覆盖demo.yaml文件内容。 DPO偏好训练、Re

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    Turbo高性能,加速训练过程 训练数据集高速读取,避免GPU/NPU因存储I/O等待产生空闲,提升GPU/NPU利用率。 大模型TB级Checkpoint文件秒级保存和加载,减少训练任务中断时间。 3 数据导入导出异步化,不占用训练任务时长,无需部署外部迁移工具 训练任务开始前将数据从OBS导入到SFS

    来自:帮助中心

    查看更多 →

  • ModelArts

    功能总览 全部 自动学习 Workflow 开发工具 算法管理 训练管理 AI应用管理 部署上线 镜像管理 资源池 AI Gallery ModelArts SDK 昇腾生态 自动学习 自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    yaml文件内容。 1、DPO偏好训练、Reward奖励模型训练、PPO强化学习目前仅限制支持于llama3系列 2、PPO训练暂不支持 ZeRO-3存在通信问题,如llama3-70B使用ZeRO-3暂不支持 训练策略类型 全参full,配置如下: finetuning_type:

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    yaml文件内容。 1、DPO偏好训练、Reward奖励模型训练、PPO强化学习目前仅限制支持于llama3系列 2、PPO训练暂不支持 ZeRO-3存在通信问题,如llama3-70B使用ZeRO-3暂不支持 训练策略类型 全参full,配置如下: finetuning_type:

    来自:帮助中心

    查看更多 →

  • 套餐包

    使用不同规格的套餐包。 ModelArts提供了AI全流程开发的套餐包,面向有AI基础的开发者,提供机器学习深度学习的算法开发及部署全功能,包含数据处理、模型开发、模型训练、模型管理和模型部署流程。 约束限制 套餐包在购买和使用时的限制如下: 套餐包和购买时选定的区域绑定,套餐

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 产品功能

    对接多种主流数据存储系统,为数据消费者实现多方数据的融合分析,参与方敏感数据能够在聚合计算节点中实现安全计算。 多方联邦训练 对接主流深度学习框架实现横向和纵向联邦建模,支持基于SMPC(如不经意传输、同态加密等)的多方样本对齐和训练模型保护。 云端容器化部署 参与方数据源计算节点云原生容器部署,聚合计算节点动态扩容,支持云、边缘、H CS O多种部署模式。

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    Turbo高性能,加速训练过程 训练数据集高速读取,避免GPU/NPU因存储I/O等待产生空闲,提升GPU/NPU利用率。 大模型TB级Checkpoint文件秒级保存和加载,减少训练任务中断时间。 3 数据导入导出异步化,不占用训练任务时长,无需部署外部迁移工具 训练任务开始前将数据从OBS导入到SFS

    来自:帮助中心

    查看更多 →

  • ModelArts

    如何查看ModelArts消费详情? 更多 自动学习 自动学习生成的模型,存储在哪里?支持哪些其他操作? 在ModelArts中图像分类和物体检测具体是什么? 自动学习训练后的模型是否可以下载? 自动学习项目中,如何进行增量训练? 更多 训练作业 ModelArts中的作业为什么一直处于等待中?

    来自:帮助中心

    查看更多 →

  • 如何判断盘古大模型训练状态是否正常

    如何判断盘古大模型训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化

    来自:帮助中心

    查看更多 →

  • 自动学习项目中,如何进行增量训练?

    自动学习项目中,如何进行增量训练? 在自动学习项目中,每训练一次,将自动产生一个训练版本。当前一次的训练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 使用AutoGenome镜像

    输出路径。 模型训练:针对提供的数据和模型参数,AutoGenome会搜索得到最优的神经网络结构。训练过程经过模型搜索阶段和模型训练阶段,在模型搜索阶段,根据json文件中的配置参数,对于选定的模型参数会训练一定步数,搜索得到较好结果的参数进行后续训练训练过程中可选择在验证数据

    来自:帮助中心

    查看更多 →

  • 哪里可以了解Atlas800训练服务器硬件相关内容

    t9处理器的AI训练 服务器 ,实现完全自主可控,广泛应用于深度学习模型开发和AI训练服务场景,可单击此处查看硬件三维视图。 Atlas 800训练服务器HCCN Tool Atlas 800 训练服务器 1.0.11 HCCN Tool接口参考主要介绍集群网络工具hccn_tool

    来自:帮助中心

    查看更多 →

  • 时序数据标注介绍

    数据标注对于KPI异常检测非常重要,可以有效提升监督学习训练过程中KPI异常检测的准确率,在无监督学习中对模型做验证评估。 监督学习:使用标注工具对原始数据进行标注,并将标注数据用于训练。用户基于训练结果确认并更新数据标注,将标注数据重新用于训练,提升KPI检测准确率。 无监督学习:使用标注工具对原始数据进

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了