华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习物体特征 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现物体检测

    使用自动学习实现物体检测 准备物体检测数据 创建物体检测项目 标注物体检测数据 训练物体检测模型 部署物体检测服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 启动智能任务

    集,不支持启动主动学习和自动分组任务,支持预标注任务。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例筛选等多种手

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 特征选择

    特征选择 删除列 删除特征列的场景有很多,例如:两个特征呈线性变化关系,为减少模型训练的开销,删除其中一个特征列。 操作步骤如下所示。 单击界面右上角的图标,选择“数据处理 > 特征选择 > 删除列”,界面新增“删除列”内容。 对应参数说明,如表1所示。 表1 参数说明 参数 参数说明

    来自:帮助中心

    查看更多 →

  • 分页查询智能任务列表

    7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12

    来自:帮助中心

    查看更多 →

  • 筛选特征

    筛选特征 样本对齐执行完成后单击下一步进入“特征选择”页面,这一步企业A需要选出企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练

    来自:帮助中心

    查看更多 →

  • 最新动态

    接口。 公测 / 2018年6月 序号 功能名称 功能描述 阶段 相关文档 1 图像搜索 服务正式公测上线 基于深度学习与图像识别技术,结合不同应用业务和行业场景,利用特征向量化与搜索能力,帮助客户从指定图库中搜索相同或相似的图片。 公测 产品介绍

    来自:帮助中心

    查看更多 →

  • 获取智能任务的信息

    7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12

    来自:帮助中心

    查看更多 →

  • 自动学习训练作业失败

    确保OBS中的数据存在 如果存储在OBS中的图片或数据被删除,且未同步至ModelArts自动学习或数据集中,则会导致任务失败。 建议前往OBS检查,确保数据存在。针对图像分类、声音分类、文本分类、物体检测等类型,可在自动学习的数据标注页面,单击“同步数据源”,将OBS中的数据重新同步至ModelArts中。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    分解机每个特征对其他域的隐向量都一致,而域感知因子分解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而

    来自:帮助中心

    查看更多 →

  • 标注物体检测数据

    图片标注。如果一张图片有多个物体,您可以标注多处。 同一个物体检测自动学习项目内,可以增加多个标签,且标签可选择不同颜色,方便识别。使用鼠标完成物体框选后,在弹出的对话框中,选择新的颜色,输入新的标签名称,即可添加一个新的标签。 自动学习项目中,物体检测仅支持矩形标注框。在“资产管理

    来自:帮助中心

    查看更多 →

  • 特征操作

    检查“已选择特征”是否为用户选择的特征列。 配置“变换特征数”,保留指定“变换特征数”的特征列。 单击“确定”,执行信息熵。 在“特征操作流总览”区域会新增一个“信息熵”节点。 新增特征 新增特征支持用户基于已有的特征列,按照样本数据行的维度,通过求和、求均值,构造出新的特征列。例如,两个特征列ID1(2

    来自:帮助中心

    查看更多 →

  • 特征画像

    。这些类别,对应到后面的特征选择、算法推荐,会有不同的策略,有效提升模型的构建效率。 单击“选择数据”左下方的“特征画像”。 新增“特征画像”内容,如图1所示。 图1 特征画像 单击“特征画像”代码框左侧的图标,运行代码。 通过运行结果左侧两个图可以直观的看一下原始数据和数据的密

    来自:帮助中心

    查看更多 →

  • 呼叫特征

    呼叫特征 表1 呼叫特征说明 值 说明 0 普通客户呼叫 1 来自话务员 2 长途客户呼叫 3 CTI收到网络路由实呼后发起的路由 4 国际长途来话 40 预约呼出 41 预占用呼出 42 预连接呼出 43 虚呼入呼出 44 预览呼出 45 回呼请求 51 内部求助 父主题: 附录

    来自:帮助中心

    查看更多 →

  • 什么是图像识别

    务效率。 媒资图像标签 基于深度学习技术,准确识别图像中的视觉内容,提供多种物体、场景和概念标签,具备目标检测和属性识别等能力帮助客户准确识别和理解图像内容。主要面向媒资素材管理、内容推荐、广告营销等领域。 图1 媒资图像标签示例图 名人识别 利用深度神经网络模型对图片内容进行检

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • 批量更新团队标注样本的标签

    7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12

    来自:帮助中心

    查看更多 →

  • 基本概念

    可支持用户进行机器学习深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。 在旧版体验

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了