深度学习图像分类结果评估 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 规则评估结果

    规则评估结果 当触发规则评估后,会生成相应的评估结果(PolicyState)。 使用JSON表达式来表示一个评估结果,如表1所示。 表1 规则评估结果-JSON表达式格式 参数 定义 说明 domain_id 账号ID 用于区分用户。规则评估结果的domain_id不会为空。 resource_id

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    决策参考。训练模型的结果通常是一个或多个机器学习深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。 业界主流的AI引擎有TensorFlow、PyTorch、MindSpore等,大量的开发者基于主流AI引擎,开发并训练其业务所需的模型。 评估模型 训练得到模型之后

    来自:帮助中心

    查看更多 →

  • 训练图像分类模型

    训练操作。 在“图像分类”节点中,待训练状态由“运行中”变为“运行成功”,即完成了模型的自动训练。 训练完成后,您可以单击“图像分类”节点上方的按钮,查看相关指标信息,如“准确率”、“评估结果”等。评估结果参数说明请参见表1。 图1 模型评估报告 表1 评估结果参数说明 参数名称

    来自:帮助中心

    查看更多 →

  • 更新合规评估结果

    更新合规评估结果 功能介绍 更新用户自定义合规规则的合规评估结果。 调用方法 请参见如何调用API。 URI PUT /v1/resource-manager/domains/{domain_id}/policy-states 表1 路径参数 参数 是否必选 参数类型 描述 domain_id

    来自:帮助中心

    查看更多 →

  • 查看模型评估结果

    查看模型评估结果 训练作业运行结束后,ModelArts可为您的模型进行评估,并且给出调优诊断和建议。 针对使用预置算法创建训练作业,无需任何配置,即可查看此评估结果(由于每个模型情况不同,系统将自动根据您的模型指标情况,给出一些调优建议,请仔细阅读界面中的建议和指导,对您的模型进行进一步的调优)。

    来自:帮助中心

    查看更多 →

  • 查看提示词评估结果

    查看提示词评估结果 评估任务创建完成后,会跳转至“评估”页面,在该页面可以查看评估状态。 图1 查看提示词评任务状态 单击“评估名称”,进入评估任务详情页,可以查看详细的评估进度,例如在图2中有10条评估用例,当前已评估8条,剩余2条待评估。 图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现图像分类

    使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 查看数据库评估结果

    。 增量评估功能,请参考增量评估。 重新采集功能,请参考重新采集。 不同的源数据结构类型不同,评估采集出的对象类型不同,参考表2。 单击对象后的“查看详情”,可查看当前对象的DDL语句。 图4 DDL语句详情 因源库语法过于庞杂、使用灵活,评估结果中工作量评估、对象评估统计等信息仅作为参考,具体请以实际迁移结果为准。

    来自:帮助中心

    查看更多 →

  • 自动学习项目中,如何进行增量训练?

    自动学习项目中,如何进行增量训练? 在自动学习项目中,每训练一次,将自动产生一个训练版本。当前一次的训练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。

    来自:帮助中心

    查看更多 →

  • 概要

    pyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    差的变化。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备

    来自:帮助中心

    查看更多 →

  • 训练模型

    会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。 父主题: 通用图像分类工作流

    来自:帮助中心

    查看更多 →

  • 评估

    下一步”,进入“评估”页面。 本地上传图片 图2 评估模板 在“应用开发>评估”页面,默认进入“本地上传”页签。 单击“上传图片”,或者拖拽测试图片至虚线框内上传图片区域,上传本地的图片作为测试图片。 测试图片上传成功后,右侧会显示识别结果。 您可以核对识别结果是否正确。 如果不

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    的“发起评估”,可对该模型发起一次评估作业,用于评估该模型在非训练数据集上的表现。 评估作业需要选择和训练数据集数据结构相同的两方数据集,以保证评估的正常进行。 模型评估指标包括准确率/AUC/KS/F1/召回率/精确率,取值范围均在0~1之间。AUC和F1作为综合评估指标,值越大说明训练出的模型越好。

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 创建图像分类项目

    创建图像分类项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏选择“开发空间 > 自动学习”,进入自动学习页面。

    来自:帮助中心

    查看更多 →

  • 评估

    击已有模板操作列的“评估”。进入“评估”页面。 图1 评估 在“应用开发”页面,依次完成“上传模板图片”、“定义预处理”、“框选参照字段”、“框选识别区”、“模板总览”步骤,单击“下一步”,进入“评估”页面。 图2 评估 评估分类器 通过上传测试图片,在线评估模型训练的模板分类器是否能正确分类模板。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了