AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习提取用户特征 更多内容
  • 音频提取

    音频提取 功能介绍 本接口为异步接口,创建音频提取任务下发成功后会返回asset_id和提取的audio_asset_id,但此时音频提取任务并没有立即完成,可通过消息订阅界面配置的音频提取完成事件来获取音频提取任务完成与否。 调试 您可以在 API Explorer 中调试该接口,支持自动认证鉴权。API

    来自:帮助中心

    查看更多 →

  • 排序策略

    路径不能包含中文。 核函数特征交互神经网络-PIN 核函数特征交互神经网络是深度网络因子分解机的改进版本,深度网络因子分解机通过向量点乘来计算特征之间的关系,而核函数特征交互神经网络使用不同的核(kernel)来对特征交互进行建模,以此来计算两个域中特征的相互关系,其中核的种类包

    来自:帮助中心

    查看更多 →

  • 特征操作

    检查“已选择特征”是否为用户选择的特征列。 配置“变换特征数”,保留指定“变换特征数”的特征列。 单击“确定”,执行信息熵。 在“特征操作流总览”区域会新增一个“信息熵”节点。 新增特征 新增特征支持用户基于已有的特征列,按照样本数据行的维度,通过求和、求均值,构造出新的特征列。例如,两个特征列ID1(2

    来自:帮助中心

    查看更多 →

  • 特征画像

    。这些类别,对应到后面的特征选择、算法推荐,会有不同的策略,有效提升模型的构建效率。 单击“选择数据”左下方的“特征画像”。 新增“特征画像”内容,如图1所示。 图1 特征画像 单击“特征画像”代码框左侧的图标,运行代码。 通过运行结果左侧两个图可以直观的看一下原始数据和数据的密

    来自:帮助中心

    查看更多 →

  • 呼叫特征

    呼叫特征 表1 呼叫特征说明 值 说明 0 普通客户呼叫 1 来自话务员 2 长途客户呼叫 3 CTI收到网络路由实呼后发起的路由 4 国际长途来话 40 预约呼出 41 预占用呼出 42 预连接呼出 43 虚呼入呼出 44 预览呼出 45 回呼请求 51 内部求助 父主题: 附录

    来自:帮助中心

    查看更多 →

  • 提取超类

    Superclass对话框中,提供重构参数。 提供提取的超类名称和包。 在Members to form superclass区域中,选择要提取的类成员。对于方法,选中Make abstract复选框,将提取的方法声明为超类中的abstract方法,并将其实现保留在原始类中。 在JavaDoc for

    来自:帮助中心

    查看更多 →

  • 提取方法对象

    提取方法对象 此重构允许您将任意代码片段单独移动到新类的方法中,以便您可以进一步将该方法分解为同一对象上的其他方法。 执行重构 在代码编辑器中,选择要提取到包装类的新方法的代码片段。 在主菜单或编辑器上下文菜单中,选择Refactor>Extract Method Object。

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 应用场景

    最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。 融合多种召回策略,网状匹配兴趣标签。 改善用户体验,同时降低人工成本。 画像与深度模型结合,助力营收收益增长。 图1 RES电商推荐 RES+媒资应用场景 场景描述 媒资推荐场景中,通常对实时性要求比较高,用户产生的

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    “FiBiNET”算法新增限制: 特征方必须要有两个及以上离散特征,连续特征可有可无。 标签方可以不提供任何特征,如果标签方提供特征也要遵循1规则。 其他算法无限制 选择完成后单击“下一步”。 在所选数据集中只能有一个字段是标签。 训练时需勾选使用的特征选项,勾选后可以跳过特征分箱,直接进行训练。

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    达能力的特征特征的数量并非重点,质量才是,总之强表达能力的特征最重要。 能否挖掘出强表达能力的特征,还在于对数据本身以及具体应用场景的深刻理解,这依赖于经验。 调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。

    来自:帮助中心

    查看更多 →

  • 响应提取

    响应提取 响应提取提取接口响应结果的某一部分,命名为参数,供后续测试步骤参数化调用。响应提取需要在前序测试步骤定义,后续测试步骤使用。 在前序测试步骤中,在“响应提取”页签创建要传递的参数。响应提取来源用到内置参数,请参考内置参数了解如何使用内置参数。响应提取同时支持正则表达式

    来自:帮助中心

    查看更多 →

  • 功能介绍

    已订阅的数据集。且支持在线查看代码、图片、音视频等多种格式的文件内容。 特征工程 特征工程是模型训练的必要过程,可以实现数据集的特征组合、筛选和转换,最大限度的从数据集中提取关键特征,供模型训练使用。 特征工程集成JupyterLab开发环境,提供数据探索工具,预置数据处理、模型

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 特征工程中已经预置了两个特征处理工程,这里暂不使用,会提供端到端的操作流程,帮助用户快速熟悉特征工程界面操作。 如果需要了解特征工程操作详情,可查看模型训练服务《用户指南》中的“特征工程”章节内容。 无故障硬盘训练数据集特征处理 单击菜单栏中的“特征工程”,进入特征工程首页,如图1所示。

    来自:帮助中心

    查看更多 →

  • 特征工程

    属性表、用户操作行为表。 全局特征信息文件 用户在使用特征工程之前,需要提供一份全局的特征信息文件,后续的特征工程、在线模块都会用到该文件。 文件数据信息请参见全局特征信息文件。 当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。

    来自:帮助中心

    查看更多 →

  • 特征操作接口

    signature_type 是 String 特征类型。 最小长度:1 最大长度:150 signature_name 否 String 特征名称。 signature_attributes 否 Array of 表4 objects 特征属性。 表4 MetadataAttributeRequest

    来自:帮助中心

    查看更多 →

  • 提取数据水印

    提取数据水印 功能介绍 提取请求数据中水印内容 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/sdg/database/watermark/extract 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String

    来自:帮助中心

    查看更多 →

  • 文档水印提取

    选择“水印提取”页签,进入“水印提取”页面。 单击左上角“新建任务”,进入“新建任务”页面。 图1 新建水印提取任务 单击添加文件选择需要进行提取水印的文件,OBS桶文件支持多选。 图2 选择文件 单击“确定”,提取水印任务创建完成。 单击目标任务名称,在弹框中查看水印提取任务状态以及OBS桶文件的暗水印内容。

    来自:帮助中心

    查看更多 →

  • 提取水印

    提取水印 数据库水印提取 文档水印提取 图片水印提取 父主题: 数据水印

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了