GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习算法在gpu 更多内容
  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    架构需要使用到大规模的计算集群(GPU/NPU 服务器 ),集群中的服务器访问的数据来自一个统一的数据源,即一个共享的存储空间。这种共享访问的数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorc

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU节点驱动版本 使用Kubernetes默认GPU调度 GPU虚拟化 监控GPU资源指标 基于GPU监控指标的工作负载弹性伸缩配置 GPU虚拟化节点弹性伸缩配置 GPU故障处理 父主题: 调度

    来自:帮助中心

    查看更多 →

  • 方案概述

    架构需要使用到大规模的计算集群(GPU/NPU服务器),集群中的服务器访问的数据来自一个统一的数据源,即一个共享的存储空间。这种共享访问的数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorc

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    python3.6、python2.7、tf2.1-python3.7,表示该模型可同时CPU或GPU运行。其他Runtime的值,如果后缀带cpu或gpu,表示该模型仅支持CPU或GPU中运行。 默认使用的Runtime为python2.7。 Spark_MLlib python2

    来自:帮助中心

    查看更多 →

  • 排序策略

    nin 是该神经元的输入数目。 优化器类型 grad:梯度下降算法 学习率:优化算法的参数,决定优化器最优方向上前进步长的参数。默认0.001。 adam:自适应矩估计算法 结合AdaGrad和 RMS Prop两种优化算法的优点,对梯度的一阶矩估计(First Moment Est

    来自:帮助中心

    查看更多 →

  • 应用场景

    内容审核-图像 内容审核-图像有以下应用场景: 视频直播 互动直播场景中,成千上万个房间并发直播,人工审核直播内容几乎不可能。基于图像审核能力,可对所有房间内容实时监控,识别可疑房间并进行预警。 场景优势如下: 准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:视频直播响应速度小于0

    来自:帮助中心

    查看更多 →

  • 约束与限制

    使用NVIDIA GPU进行深度学习时,通常需要安装CUDA和cuDNN。请使用配套关系的基础镜像。 Pod存储空间限制 如果没有挂载EVS等磁盘,应用数据存储容器的rootfs,每个Pod存储空间限制如下所示: 表4 每个Pod存储空间限制 Pod类型 存储空间限制 CPU型Pod

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    算场景的平台,它弥补了Kubernetes机器学习深度学习、HPC、大数据计算等场景下的基本能力缺失,其中包括gang-schedule的调度能力、计算任务队列管理、task-topology和GPU亲和性调度。另外,Volcano原生Kubernetes能力基础上对计算任

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    架构需要使用到大规模的计算集群(GPU/NPU服务器),集群中的服务器访问的数据来自一个统一的数据源,即一个共享的存储空间。这种共享访问的数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorc

    来自:帮助中心

    查看更多 →

  • 创建共享资源池

    对资源的关注。 创建步骤 开始执行批量计算前,请先创建资源池环境。 登录BCE控制台,左侧导航栏单击“资源池管理”。 “共享资源池”页签,单击“创建共享资源池”。 图1 创建共享资源池 “创建共享资源池”页面中,填写基础信息,并选择资源池所在的命名空间,具体参数如表1所示。

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU调度概述 准备GPU资源 创建GPU应用 监控GPU资源 父主题: 管理本地集群

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 如何在代码中打印GPU使用信息

    Total {3:.0f}MB".format(gpu.memoryFree, gpu.memoryUsed, gpu.memoryUtil*100, gpu.memoryTotal)) 注:用户使用pytorch/tensorflow等深度学习框架时也可以使用框架自带的api进行查询。

    来自:帮助中心

    查看更多 →

  • 最新动态

    Studio新版本分为基础版和专业版,针对新用户,申请公测时需要选择开通HiLens Studio基础版还是专业版。 公测 2020年9月 序号 功能名称 功能描述 阶段 1 支持难例上传 开发者新建技能时,使用难例推理接口,填写难例参数,发布技能。 技能使用者安装技能至设备后,选择开启难例上传,并填写参数,上传难例至OBS。

    来自:帮助中心

    查看更多 →

  • 算法

    KcoreSample K核算法 KhopSample K跳算法 ShortestPathSample 最短路径算法 AllShortestPathsSample 全最短路径算法 FilteredShortestPathSample 带一般过滤条件最短路径 SsspSample 单源最短路径算法 Sh

    来自:帮助中心

    查看更多 →

  • 迁移学习

    创建迁移数据Jupyterlab算法工程,详细操作请参见创建特征工程。 请按照本节的操作顺序算法工程中完成数据迁移,若其中穿插了其他数据操作,需要保证有前后衔接关系的两个代码框的dataflow名字一致。 绑定源数据 进入迁移数据JupyterLab环境编辑界面,运行“Import sdk”代码框。

    来自:帮助中心

    查看更多 →

  • 学习项目

    协同人的数据监控范围遵循当前用户针对该学习项目选择的数据数据范围 设置完毕后单击【发布】即可,该学习项目创建完成 学习项目管理 任务分派 通过【任务分派】功能可以指派具体人员学习,被选中的学员会将以任务形式接受消息通知和待办,需规定期限内完成学习任务。管理员可进行实时监控并获得学习相关数据。 操作路

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 卸载GPU加速型ECS的GPU驱动

    64位操作系统为例,介绍GPU加速 云服务器 卸载NVIDIA驱动(驱动版本462.31)的操作步骤。 登录弹性云服务器。 单击“开始”,打开“控制面板”。 控制面板中,单击“卸载程序”。 图1 单击卸载程序 右键单击要卸载的NVIDIA驱动,单击“卸载/更改”。 图2 卸载驱动 弹出的“NVIDIA

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了