AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习算法python 更多内容
  • 算法

    KcoreSample K核算法 KhopSample K跳算法 ShortestPathSample 最短路径算法 AllShortestPathsSample 全最短路径算法 FilteredShortestPathSample 带一般过滤条件最短路径 SsspSample 单源最短路径算法 Sh

    来自:帮助中心

    查看更多 →

  • 排序策略

    径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。 表4 深度网络因子分解机参数说明 参数名称

    来自:帮助中心

    查看更多 →

  • 算法

    算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test

    来自:帮助中心

    查看更多 →

  • 算法

    算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 产品术语

    提供AI模型的交易市场,是AI消费者接触NAIE云服务的线上门户,是AI消费者对已上架的AI模型进行查看、试用、订购、下载和反馈意见的场所。 AI引擎 可支持用户进行机器学习深度学习、模型训练的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 B

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    纵向联邦作业XGBoost算法只支持两方参与训练。 训练作业必须选择一个当前计算节点发布的数据集。 作业创建者的数据集必须含有特征。 创建纵向联邦学习作业 纵向联邦学习作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法和FiBiNET算法。 纵向联邦学习分为五个步骤:数据选择

    来自:帮助中心

    查看更多 →

  • 应用场景

    面向电商推荐场景的多种推荐相关算法和大数据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。 融合多种召回策略,网状匹配兴趣标签。 改善用户体验,同时降低人工成本。 画像与深度模型结合,助力营收收益增长。 图1

    来自:帮助中心

    查看更多 →

  • Python

    2018.3.5或以上版本,可至IntelliJ IDEA官方网站下载。 获取并安装Python安装包(可使用2.7.9+或3.X,包含2.7.9),可至Python官方下载页面下载。 Python安装完成后,在命令行中使用pip安装“requests”库。 pip install

    来自:帮助中心

    查看更多 →

  • Python

    n或者python3,查看Python是否已经安装。python命令只能查询Python 2.x版本,python3命令只能查询Python 3.x版本,如果无法确认Python版本,请分别输入两个命令查看结果。 以Python 3.x为例,得到如下回显,说明Python已安装。

    来自:帮助中心

    查看更多 →

  • Python

    Python 样例 语音验证码场景API、呼叫状态通知API、话单通知API 环境要求 Python 3.0及以上版本。 引用库 requests 2.18.1 请自行下载安装Python 3.x,并完成环境配置。 打开命令行窗口,执行pip install requests命令。

    来自:帮助中心

    查看更多 →

  • Python

    Python 样例 发送短信(示例1)、发送分批短信(示例1) 发送短信(示例2)、发送分批短信(示例2) 接收状态报告、接收上行短信 环境要求 基于Python 3.7.0版本,要求Python 3.7及以上版本。 引用库 requests 2.18.1(仅示例1引用) 请自行下载安装Python

    来自:帮助中心

    查看更多 →

  • Python

    用户可以参考表1和表2配置Python节点的参数。 表1 属性参数 参数 是否必选 说明 Python语句或脚本 是 可以选择Python语句或Python脚本。 Python语句 单击“Python语句”参数下的文本框,在“Python语句”页面输入需要执行的Python语句,选择Python脚本。

    来自:帮助中心

    查看更多 →

  • 最新动态

    人脸检测技能 面向智慧商超的人脸采集技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中的清晰人脸上传至您的后台系统,用于后续实现其他业务。 商用 多区域客流分析技能 面向智慧商超的客流统计技能。本技能使用深度学习算法,实时分析视频流,自动统计固定时间间隔的客流信息。 车牌识别技能

    来自:帮助中心

    查看更多 →

  • 创建算法

    创建算法 机器学习从有限的观测数据中学习一般性的规律,并利用这些规律对未知的数据进行预测。为了获取更准确的预测结果,用户需要选择一个合适的算法来训练模型。针对不同的场景,ModelArts提供大量的算法样例。以下章节提供了关于业务场景、算法学习方式、算法实现方式的指导。 选择算法的实现方式

    来自:帮助中心

    查看更多 →

  • 智能场景简介

    针对对应的场景,由RES根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。 智能场景功能说明 表1 功能说明 功能 说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法深度挖掘物品之间的联系,自动匹配精准内容。

    来自:帮助中心

    查看更多 →

  • Python

    Python 简介 开始工程 构建环境 代码编辑 代码浏览 代码搜索 代码校验 测试 调试 启动配置

    来自:帮助中心

    查看更多 →

  • Python

    Secret等信息,具体参见认证前准备。 获取并安装Python安装包(可使用2.7.9+或3.X),如果未安装,请至Python官方下载页面下载。 Python安装完成后,在cmd/shell窗口中使用pip安装“requests”库。 pip install requests

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了