AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习视觉keras 更多内容
  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 什么是图像识别

    务效率。 媒资图像标签 基于深度学习技术,准确识别图像中的视觉内容,提供多种物体、场景和概念标签,具备目标检测和属性识别等能力帮助客户准确识别和理解图像内容。主要面向媒资素材管理、内容推荐、广告营销等领域。 图1 媒资图像标签示例图 名人识别 利用深度神经网络模型对图片内容进行检

    来自:帮助中心

    查看更多 →

  • Notebook中使用Conda安装Keras 2.3.1报错

    Notebook中使用Conda安装Keras 2.3.1报错 问题现象 使用Conda安装Keras 2.3.1版本报错。 原因分析 可能是Conda网络不通,请使用pip install命令安装。 解决方法 执行 !pip install keras==2.3.1命令安装Keras。 父主题: 环境配置故障

    来自:帮助中心

    查看更多 →

  • 在CCE集群中部署使用Tensorflow

    model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation=tf.nn.relu), keras.layers

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 日志提示“Unexpected keyword argument passed to optimizer”

    e”的参数名称写错了。keras官方文档中说明参数“lr”已重命名为“learning_rate”,在训练代码中必须写成“learning_rate”才能调用成功。keras官方文档请参见https://github.com/keras-team/keras/releases/tag/2

    来自:帮助中心

    查看更多 →

  • 常用概念

    转码的一种方式,是指一个视频源文件在一个转码任务中输出多个分辨率、码率的视频文件,以满足不同终端、不同网速的播放需求。 画质增强 是指通过传统成熟的超分辨率算法与AI深度学习的画质增强算法相结合,达到视频分辨率提升、视频画质提升等效果,可用于2K视频转4K视频、修复视频的受损图像,提升已有视频播放画质等效果。

    来自:帮助中心

    查看更多 →

  • 方案概述

    大连税务虚拟数字人系统是一种人工智能技术应用,它采用深度学习算法、 自然语言处理 技术、智能语音技术以及计算机视觉技术等,将虚拟形象与人工智能技术很好地结合,从而创建出一种可以与人进行面对面互动沟通的虚拟客服系统。通过深度融合语义理解、智能语音、计算机视觉三方面的AI技术,虚拟数字人系统可以模拟

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 如何将Keras的.h5格式模型导入到ModelArts中

    如何将Keras的.h5格式模型导入到ModelArts中 ModelArts不支持直接导入“.h5”格式的模型。您可以先将Keras的“.h5”格式转换为TensorFlow的格式,然后再导入ModelArts中。 从Keras转TensorFlow操作指导请参见其官网指导。 父主题:

    来自:帮助中心

    查看更多 →

  • 日志提示“AttributeError: 'NoneType' object has no attribute 'dtype'”

    'NoneType' object has no attribute 'dtype'” 问题现象 代码在Notebook的keras镜像中可以正常运行,在训练模块使用tensorflow.keras训练报错时,出现如下报错:AttributeError: 'NoneType' object has no

    来自:帮助中心

    查看更多 →

  • 方案概述

    依托智慧教室的建设,为学校构建下一代数字学习环境,促进教学对象、教学内容、教学活动、教学工具、教学空间有机融合。 通过深度融合的软硬件集成,用一个应用满足教学一体化、管理一体化的需求,满足多场景教学的实际使用。依靠高清4K屏、收扩音系统,升级本地学生视听学习体验的同时让远端学生也都能看得清

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 最新动态

    果更加准确。 商用 应用场景 2018年4月 序号 功能名称 功能描述 阶段 相关文档 1 图像识别服务正式公测上线 基于深度学习技术,可准确识别图像中的视觉内容,提供多种物体、场景和概念标签,具备目标检测和属性识别等能力,帮助客户准确识别和理解图像内容。 公测 产品介绍

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 线上培训课程介绍

    可以根据自己的实际情况,报名并参加华为云线上培训课程,随时随地学习。 当前已上线学习路径和在线课程包括: 数据库、计算机视觉、鲲鹏、物联网、云迁移等热门技术学习路径; HCIA、HCIP、HCIE职业认证在线课程学习路径; 计算、存储、网络、安全、管理与部署、应用服务、数据库、迁

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 开发模型

    affe算子边界请见附录Caffe算子边界和Tensorflow算子边界。 “.om”模型当前暂不能完全兼容TensorFlow内置的Keras API。 “.om”模型当前不支持Caffe2。 采用ModelArts开发 ModelArts是面向AI开发者的一站式开发平台,您可

    来自:帮助中心

    查看更多 →

  • 超分图像重建

    超分图像重建 功能介绍 图像在成像过程中存在像素过少导致的视觉信息不够或者由于压缩导致的图像信息丢失的情况。针对此类场景,超分图像重建基于深度学习算法,对图像中缺失的视觉信息进行补充,使得图像视觉效果更好。使用时用户发送待处理图片,返回经过超分图像重建后的结果图片。 前提条件 在

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了