华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习十大经典算法 更多内容
  • 经典版入门必读

    经典版入门必读 初识经典开发环境 经典应用开发工作台介绍 登录经典应用设计器 应用开发入门指引 父主题: 经典版开发指导

    来自:帮助中心

    查看更多 →

  • 迁移学习

    单击图标,运行“评估迁移数据”代码框内容。 评估迁移算法 如果评估迁移数据的结果为当前数据适合迁移,可以使用评估迁移算法评估当前数据适合采用哪种算法进行迁移。 单击界面右上角的图标,选择“迁移学习 > 特征迁移 > 迁移评估 > 评估迁移算法”。界面新增“评估迁移算法”内容。 对应参数说明,如表4所示。

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 应用场景

    准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:视频直播响应速度小于0.1秒。 在线商城 智能审核商家/用户上传图像,高效识别并预警不合规图片,防止涉黄、涉暴类图像发布,降低人工审核成本和业务违规风险。 场景优势如下: 准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:单张图像识别速度小于0

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 执行作业

    常规配置参数 算法类型 参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度和精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权和。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 异常检测

    maxTreeHeight 否 Tree最大高度。 12 seed 否 算法使用的随机种子值。 4010 numClusters 否 分类数,默认包含异常和非异常两类。 2 dataViewMode 否 算法学习模式。 history:学习所有历史数据。 horizon:仅考虑最近一段时间历史数据,默认为4个窗口。

    来自:帮助中心

    查看更多 →

  • 异常检测

    maxTreeHeight 否 Tree最大高度。 12 seed 否 算法使用的随机种子值。 4010 numClusters 否 分类数,默认包含异常和非异常两类。 2 dataViewMode 否 算法学习模式。 history:学习所有历史数据。 horizon:仅考虑最近一段时间历史数据,默认为4个窗口。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    纵向联邦作业XGBoost算法只支持两方参与训练。 训练作业必须选择一个当前计算节点发布的数据集。 作业创建者的数据集必须含有特征。 创建纵向联邦学习作业 纵向联邦学习作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法和FiBiNET算法。 纵向联邦学习分为五个步骤:数据选择

    来自:帮助中心

    查看更多 →

  • 排序策略

    径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。 表4 深度网络因子分解机参数说明 参数名称

    来自:帮助中心

    查看更多 →

  • 算法

    KhopSample K跳算法 ShortestPathSample 最短路径算法 AllShortestPathsSample 全最短路径算法 FilteredShortestPathSample 带一般过滤条件最短路径 SsspSample 单源最短路径算法 ShortestPa

    来自:帮助中心

    查看更多 →

  • 智能场景简介

    针对对应的场景,由RES根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。 智能场景功能说明 表1 功能说明 功能 说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法深度挖掘物品之间的联系,自动匹配精准内容。

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    nin 是该神经元的输入数目。 优化器类型 grad:梯度下降算法 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 adam:自适应矩估计算法 结合AdaGrad和 RMS Prop两种优化算法的优点,对梯度的一阶矩估计(First Moment Est

    来自:帮助中心

    查看更多 →

  • 经典版开发指导

    经典版开发指导 经典版入门必读 应用 对象 标准页面 高级页面 服务编排 脚本开发 BPM服务编排 API接口 集成开发 消息事件 触发器 报表和仪表板 CICD持续集成与交付 服务组件(BO) 调测能力 工程能力 原生服务 其他功能 管理中心 5G消息 白名单特性

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 产品优势

    多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量数据的深入学习和分析,盘古大模型能够捕捉语言中的细微差别和复杂模式,无论是在词汇使用、语法结构,还是语义理解上,都能达到令人满意的精度。此外,模型具备自我学习和不断进化的能力,随

    来自:帮助中心

    查看更多 →

  • 经典版VPN购买流程

    经典版VPN购买流程 入门指引 购买VPN(墨西哥城一/圣保罗一) 创建VPN网关 创建VPN连接 配置对端设备

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了