中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    深度学习如何提取数据特征 更多内容
  • 特征操作

    节点。 选择特征 特征操作支持选择并保留数据集中指定的特征列,删除其余特征列。操作步骤如下。 单击表头,选中需要执行的特征列。 单击“特征操作”,从下拉框中选择“选择特征”。 弹出“选择特征”对话框。检查“已选择特征”是否为用户选择的特征列。 单击“确定”。 在“特征操作流总览”区域会新增一个“选择特征”节点。

    来自:帮助中心

    查看更多 →

  • 特征画像

    ,对应到后面的特征选择、算法推荐,会有不同的策略,有效提升模型的构建效率。 单击“选择数据”左下方的“特征画像”。 新增“特征画像”内容,如图1所示。 图1 特征画像 单击“特征画像”代码框左侧的图标,运行代码。 通过运行结果左侧两个图可以直观的看一下原始数据数据的密度分布图。运行结果右侧的参数说明,如表1所示。

    来自:帮助中心

    查看更多 →

  • 呼叫特征

    呼叫特征 表1 呼叫特征说明 值 说明 0 普通客户呼叫 1 来自话务员 2 长途客户呼叫 3 CTI收到网络路由实呼后发起的路由 4 国际长途来话 40 预约呼出 41 预占用呼出 42 预连接呼出 43 虚呼入呼出 44 预览呼出 45 回呼请求 51 内部求助 父主题: 附录

    来自:帮助中心

    查看更多 →

  • 排序策略

    深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。 表4 深度网络因子分解机参数说明 参数名称 说明 计算节点信息 用户可使用的计算资源种类

    来自:帮助中心

    查看更多 →

  • 修改数据源特征

    修改数据特征 功能介绍 修改数据源中的特征。 调试 您可以在 API Explorer 中调试该接口。 URI PUT /v2.0/{project_id}/workspaces/{workspace_id}/data-sources/{datasource_id}/data-struct

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    达能力的特征特征的数量并非重点,质量才是,总之强表达能力的特征最重要。 能否挖掘出强表达能力的特征,还在于对数据本身以及具体应用场景的深刻理解,这依赖于经验。 调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。

    来自:帮助中心

    查看更多 →

  • 模型训练服务简介

    开发和训练 AutoML自动完成特征选择、超参选择及算法选择,提升模型开发效率 高效开发工具JupyterLab和WebIDE:交互式编码体验、0编码数据探索及云端编码及调试 联邦学习&重训练,保障模型应用效果 支持联邦学习,模型可以采用多地数据进行联合训练,提升样本多样性,提升模型效果

    来自:帮助中心

    查看更多 →

  • 提取/引入重构

    提取/引入重构 简介 引入变量 引入参数 引入字段 引入常量 提取方法 提取接口 提取超类 提取委托 引入功能参数 引入功能变量 提取方法对象 引入参数对象 父主题: 重构

    来自:帮助中心

    查看更多 →

  • 分析ModelArts数据集中的数据特征

    特征分析。 只有发布后的数据集支持数据特征分析。发布后的Default格式数据集版本支持数据特征分析。 数据特征分析的数据范围,不同类型的数据集,选取范围不同: 对于标注任务类型为“物体检测”的数据集版本,当已标注样本数为0时,发布版本后,数据特征页签版本置灰不可选,无法显示数

    来自:帮助中心

    查看更多 →

  • 提取变量

    提取变量 TypeScript语言服务提供Extract to constant 重构,为当前选定的表达式创建新的局部变量: 使用类时,还可以将值提取到新属性中。 父主题: 重构操作

    来自:帮助中心

    查看更多 →

  • 提取方法

    提取方法 此重构允许您将任意代码片段移动到单独的方法中,并将其替换为对此新创建的方法的调用。这与内联方法相反。 执行重构 在代码编辑器中,选择要提取到新方法的代码片段。 在主菜单或编辑器上下文菜单中,选择Refactor>Extract Method,或按“Ctrl+Shift+Alt+M”。

    来自:帮助中心

    查看更多 →

  • 音频提取

    音频提取 功能介绍 本接口为异步接口,创建音频提取任务下发成功后会返回asset_id和提取的audio_asset_id,但此时音频提取任务并没有立即完成,可通过消息订阅界面配置的音频提取完成事件来获取音频提取任务完成与否。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API

    来自:帮助中心

    查看更多 →

  • 方案概述

    ; 快速扩展,安全稳定:构建基于iDME元数据的标准化SaaS应用优势,元数据驱动,开发超过30个以上的标准化元数据驱动功能模块,快速扩展,安全稳定; 自主可控:与其它国产工业软件协同,以模型纬度定义在产品生命周期过程中的数据信息,数据及解析存储兼容Part&BOM、3PR模型、

    来自:帮助中心

    查看更多 →

  • 执行作业

    横向评估型作业在作业配置页面单击“保存”按钮后,可以直接单击“执行”按钮。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的作业,单击“执行”,系统自动跳转到“历史作业”页面。 图1 执行作业 等待执行完成,在“历史作

    来自:帮助中心

    查看更多 →

  • 特征工程

    在当前界面,可以看到如下两个特征工程: HardDisk-Detect_Good:好盘特征工程,用于对好盘训练数据或测试数据,进行数据处理,并生成经过特征处理后的新数据。 HardDisk-Detect_Fail:坏盘特征工程,用于对坏盘训练数据或测试数据,进行数据处理,并生成经过特征处理后的新数据。

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 特征工程可对推荐系统的离线数据进行处理,它包含两个功能: 从离线数据提取用户、物品画像和RES内部通用格式数据; 把RES内部通用格式数据处理成训练排序模型所需的训练数据、测试数据等。 与功能对应,特征工程的两个任务分别是: 初始用户画像-物品画像-标准宽表生成 排序样本预处理

    来自:帮助中心

    查看更多 →

  • 特征操作接口

    signature_type 是 String 特征类型。 最小长度:1 最大长度:150 signature_name 否 String 特征名称。 signature_attributes 否 Array of 表4 objects 特征属性。 表4 MetadataAttributeRequest

    来自:帮助中心

    查看更多 →

  • 应用场景

    不一致。 RES提供一站式电商推荐解决方案,在一套数据源下,支持多种电商推荐场景,提供面向电商推荐场景的多种推荐相关算法和大数据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。 融合多种召回策略,网状匹配兴趣标签。

    来自:帮助中心

    查看更多 →

  • 提取超类

    Superclass对话框中,提供重构参数。 提供提取的超类名称和包。 在Members to form superclass区域中,选择要提取的类成员。对于方法,选中Make abstract复选框,将提取的方法声明为超类中的abstract方法,并将其实现保留在原始类中。 在JavaDoc for

    来自:帮助中心

    查看更多 →

  • 提取方法对象

    提取方法对象 此重构允许您将任意代码片段单独移动到新类的方法中,以便您可以进一步将该方法分解为同一对象上的其他方法。 执行重构 在代码编辑器中,选择要提取到包装类的新方法的代码片段。 在主菜单或编辑器上下文菜单中,选择Refactor>Extract Method Object。

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 如何选中全量特征列? 算法工程处理的时候必须要先采样吗? 特征处理操作完成后怎么应用于数据集全量数据特征工程和算法工程的关系? JupyterLab环境异常怎么处理? 父主题: 常见问题

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了