GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习如何实现gpu加速 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • GPU加速型

    GPU加速 云服务器 包括G系列和P系列两类。其中: G系列:图形加速型弹性 服务器 ,适合于3D动画渲染、CAD等。 P系列:计算加速型或推理加速型弹性云服务器,适合于深度学习、科学计算、CAE等。 为了保障GPU加速云服务器高可靠、高可用和高性能,该类型云服务器的公共镜像中会默认预置带GPU监控的CES

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • GPU驱动概述

    GPU驱动概述 GPU驱动概述 在使用GPU加速型实例前,请确保实例已安装GPU驱动以获得相应的GPU加速能力。 GPU加速型实例支持两种类型的驱动:GRID驱动和Tesla驱动。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐

    来自:帮助中心

    查看更多 →

  • 卸载GPU加速型ECS的GPU驱动

    卸载GPU加速型E CS GPU驱动 操作场景 当GPU加速云服务器需手动卸载GPU驱动时,可参考本文档进行操作。 GPU驱动卸载命令与GPU驱动的安装方式和操作系统类型相关,例如: Windows操作系统卸载驱动 Linux操作系统卸载驱动 Windows操作系统卸载驱动 以Windows

    来自:帮助中心

    查看更多 →

  • 管理GPU加速型ECS的GPU驱动

    管理GPU加速型ECS的GPU驱动 GPU驱动概述 Tesla驱动及CUDA工具包获取方式 (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 手动安装GPU加速型ECS的GRID驱动 手动安装GPU加速型ECS的Tesla驱动

    来自:帮助中心

    查看更多 →

  • 如何配置Pod使用GPU节点的加速能力?

    如何配置Pod使用GPU节点的加速能力? 问题描述 我已经购买了GPU节点,但运行速度还是很慢,请问如何配置Pod使用GPU节点的加速能力。 解答 方案1: 建议您将集群中GPU节点的不可调度的污点去掉,以便GPU插件驱动能够正常安装,同时您需要安装高版本的GPU驱动。 如果您的

    来自:帮助中心

    查看更多 →

  • 功能介绍

    部分深度学习模型参数 一键式模型部署和API发布,提供深度学习模型的快速部署功能,支持GPU资源分配、弹性扩容、模型迭代发布、应用监控和统计分析,轻松实现AI能力服务化。 图19 模型部署发布平台 平台基于模型训练结果,面向典型业务场景与应用需求,可提供遥感影像在线智能解译能力,包括遥感影像的单

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Linux)

    (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何GPU加速型Linux实例上通过脚本自动安装GPU驱动。 使用须知 本操作仅支持Linux操作系统。

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现预测分析

    使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 全球加速如何根据时延实现流量调度?

    全球加速如何根据时延实现流量调度? 流量调度是指配置到不同终端节点组的流量比例。如果监听器中有多个终端节点组,分配流量时优先选择时延最低的终端节点组,并按照该终端节点组的流量调度值分配流量,然后再向其他终端节点组分配其余流量。 示例: 如图1所示,某跨国企业在深圳和香港分别开设了

    来自:帮助中心

    查看更多 →

  • 弹性伸缩概述

    够多的节点来调度新扩容的Pod,那么就需要为集群增加节点,从而保证业务能够正常提供服务。 弹性伸缩在CCE上的使用场景非常广泛,典型的场景包含在线业务弹性、大规模计算训练、深度学习GPU或共享GPU的训练与推理、定时周期性负载变化等。 CCE弹性伸缩 CCE的弹性伸缩能力分为如下两个维度:

    来自:帮助中心

    查看更多 →

  • 约束与限制

    NVIDIA GPU驱动版本 CUDA Toolkit版本 460.106 CUDA 11.2.2 Update 2 及以下 418.126 CUDA 10.1 (10.1.105)及以下 GPU镜像 CUDA和cuDNN都是与GPU相关的技术,用于加速各种计算任务,特别是深度学习任务。在使用NVIDIA

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Windows)

    (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何GPU加速型Windows实例上通过脚本自动安装GPU驱动。 使用须知 如果GPU加速型实例已安装G

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、准确、可解释的医疗智能模型,加速医疗大健康行业的研究工作。 成熟的权限管理体系,保障数据安全的同时,确保团队高效协作。

    来自:帮助中心

    查看更多 →

  • 通过Gcc/Clang实现构建加速

    使用构建加速能力需要额外购买配套构建加速包,构建加速包因加速原理以及效果的不同,共有三种规格以供购买,规格介绍及购买指南请参考购买构建加速包。 用户基于自定义执行机的构建,无法使用构建加速能力。 配置CMake构建加速(图形化构建) 通过项目入口方式访问CodeArts Build服务首页。 单击需要配置构建加速的构建任务名称。

    来自:帮助中心

    查看更多 →

  • 最新动态

    2021年6月 序号 功能名称 功能描述 阶段 相关文档 1 GPU加速型,新增P2s型弹性云服务器。 P2s型弹性云服务器采用NVIDIA Tesla V100 GPU,能够提供超高的通用计算能力,适用于AI深度学习、科学计算,在深度学习训练、科学计算、计算流体动力学、计算金融、地震分析、

    来自:帮助中心

    查看更多 →

  • 创建共享资源池

    选择命名空间,如未创建,单击“创建命名空间”。命名空间类型分为“通用计算型”和“GPU加速型”: 通用计算型:支持创建含CPU资源的容器实例及工作负载,适用于通用计算场景。 GPU加速型:支持创建含GPU资源的容器实例及工作负载,适用于深度学习、科学计算、视频处理等场景。 访问密钥 单击“点击上传”,

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    ,集群有4块GPU卡,TFJob1和TFJob2作业各自有4个Worker,TFJob1和TFJob2各自分配到2个GPU。但是TFJob1和TFJob2均需要4块GPU卡才能运行起来。这样TFJob1和TFJob2处于互相等待对方释放资源,这种死锁情况造成了GPU资源的浪费。 亲和调度问题

    来自:帮助中心

    查看更多 →

  • GPU加速云服务器出现NVIDIA内核崩溃,如何解决?

    GPU加速云服务器 出现NVIDIA内核崩溃,如何解决? 问题描述 GPU加速云服务器在运行过程中发生crash,重启云服务器后检查日志,发现没有打印NVIDIA驱动堆栈日志。 图1 堆栈日志信息 可能原因 云服务器在运行过程中遇到NVIDIA官方驱动bug,导致云服务器内核崩溃。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了